Occurrence of rift valley fever in cattle in Ijara district, Kenya

Nelson O. Owange a,d, *, William O. Ogar a, Hippolyte Affognon d, Gathura B. Peter a, Jacqueline Kasiiti b, Sam Okuthe c, W. Onyango-Ouma c, Tobias Landmann d, Rosemary Sang d,f, Murithi Mbabu b

a University of Nairobi, Faculty of Veterinary Medicine, Department of Public Health Pharmacology and Toxicology, PO Box 29053-00625, Nairobi, Kenya
b Ministry of Agriculture, Livestock and Fisheries, State Department of Veterinary Services, Private Bag-00625, Nairobi, Kenya
c FAO, Emergency Centre for Transboundary Animal Diseases (ECTAD), Eastern Africa, FAO-UN, United Nations Avenue, Gikiri, Kenya
d International Centre for Insect Physiology and Ecology (ICIPE), PO Box 30772-00100, Nairobi, Kenya
e Institute of Anthropology, Gender & African Studies, University of Nairobi, PO Box 30197-00100, Nairobi, Kenya
f The Center for Virus Research, Kenya Medical Research Institute, PO Box 54628, Nairobi, Kenya

Article history:
Received 27 February 2014
Received in revised form 6 August 2014
Accepted 12 August 2014

Keywords:
Rift valley fever
Occurrence
Epidemiology
Sero-prevalence
in cattle
Maintenance

Abstract

Ijara district in Kenya was one of the hotspots of rift valley fever (RVF) during the 2006/2007 outbreak which led to human and animal deaths causing huge economic and public health losses. The main constraint in the control and prevention of RVF is inadequate knowledge on its occurrence during the interepidemic period. This study was aimed at understanding the occurrence of RVF in cattle in Ijara to enable the development of improved community-based disease surveillance, prediction, control and prevention.

Six herds each 700–1000 cattle were identified with participatory involvement of locals and project technical team of the project. One animal per herd was tagged with global position system (GPS) collar to enable follow up. Sero-surveys were conducted periodically to understand the herd’s movement through various ecological zones and risk of exposure to RVF virus. Sixty animals less than 3 years old from each herd were randomly selected each sampling time and sero-surveyed for RVF four times (September 2012, December 2012, February 2013 and May 2013) during the study period and along the nomadic movement route. The serum samples collected were subjected to RVF inhibition ELISA test to detect if there was exposure for RVF virus (RVFV). The RVF inhibition ELISA positive samples were subjected to IgM ELISA test to determine if the exposures were current or recent (within 14 days).

The result of the survey indicated that 13.1% (183/1396) of cattle sero-surveyed had RVFV antibodies by inhibition ELISA test while 1.4% (18/1396) was positive for IgM ELISA test. The highest RVFV circulation was detected after herds pass through bony forest between Lamu and Ijara and Halei forested areas. These forested areas also had the highest IgM detections. The findings indicate that even limited rainfall was able to initiate RVFV circulation in Ijara.

* Corresponding author at: Nelson Ochieng Owange, PO Box 36001-00200, Nairobi, Kenya. Tel.: +254 0 725536153; fax: +254 0 736536153.
E-mail addresses: owanne@ yahoo.com, owangenelson@gmail.com, nowangen@icipe.org (N.O. Owange), wogara@umbi.ac.ke (W.O. Ogar), haigonn@icipe.org (H. Affognon), pgathura@umbi.ac.ke (G.B. Peter), Kasiiti.oengo@gmail.com (J. Kasiiti), sam.okuthe@fao.org (S. Okuthe), onyango.uma@yahoo.com (W. Onyango-Ouma), tlandmann@icipe.org (T. Landmann), Rosemary.sang@umsu-k.org (R. Sang), murithinmbabu@yahoo.com (M. Mbabu).

http://dx.doi.org/10.1016/j.prevetmed.2014.08.008
0167-5877/© 2014 Elsevier B.V. All rights reserved.