Nomenclature of Heterocyclic Compounds
The IUPAC rules allow three nomenclatures.

I. The Hantzsch-Widman Nomenclature.

II. Common Names

III. The Replacement Nomenclature
I. Hantzsch-Widman Nomenclature

The Hantzsch-Widman nomenclature is based on the type (Z) of the heteroatom; the ring size (n) and nature of the ring, whether it is saturated or unsaturated.

This system of nomenclature applies to monocyclic three-to-ten-membered ring heterocycles.
I. Type of the heteroatom

The type of heteroatom is indicated by a prefix as shown below for common heteroatoms:

<table>
<thead>
<tr>
<th>Heteroatom</th>
<th>Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Oxa</td>
</tr>
<tr>
<td>N</td>
<td>Aza</td>
</tr>
<tr>
<td>S</td>
<td>Thia</td>
</tr>
<tr>
<td>P</td>
<td>Phospha</td>
</tr>
</tbody>
</table>
II. Ring size (n)

The ring size is indicated by a suffix according to Table I below. Some of the syllables are derived from Latin numerals, namely ir from tri, et from tetra, ep from hepta, oc from octa, on from nona, ec from deca.

Table I: Stems to indicate the ring size of heterocycles

<table>
<thead>
<tr>
<th>Ring size</th>
<th>Suffix</th>
<th>Ring size</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ir</td>
<td>7</td>
<td>ep</td>
</tr>
<tr>
<td>4</td>
<td>et</td>
<td>8</td>
<td>oc</td>
</tr>
<tr>
<td>5</td>
<td>ol</td>
<td>9</td>
<td>on</td>
</tr>
<tr>
<td>6</td>
<td>in</td>
<td>10</td>
<td>ec</td>
</tr>
</tbody>
</table>
The endings indicate the size and degree of unsaturation of the ring.

Table II: Stems to indicate the ring size and degree of unsaturation of heterocycles

<table>
<thead>
<tr>
<th>Ring size</th>
<th>Saturated</th>
<th>Unsaturated</th>
<th>Saturated (With Nitrogen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-irane</td>
<td>-irine</td>
<td>-iridine</td>
</tr>
<tr>
<td>4</td>
<td>-etane</td>
<td>-ete</td>
<td>-etidine</td>
</tr>
<tr>
<td>5</td>
<td>-olane</td>
<td>-ole</td>
<td>-olidine</td>
</tr>
<tr>
<td>6</td>
<td>-inane</td>
<td>-ine</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-epane</td>
<td>-epine</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-ocane</td>
<td>-ocine</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-onane</td>
<td>-onine</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-ecane</td>
<td>-ecine</td>
<td></td>
</tr>
</tbody>
</table>
According to this system heterocycles are named by combining appropriate prefix/prefixes with a stem from Table II. The letter “a” in the prefix is omitted where necessary.

Each suffix consists of a ring size root and an ending intended to designate the degree of unsaturation in the ring.

It is important to recognize that the saturated suffix applies only to completely saturated ring systems, and the unsaturated suffix applies to rings incorporating the maximum number of non-cumulated double bonds.
Systems having a lesser degree of unsaturation require an appropriate prefix, such as "dihydro" or "tetrahydro".

Saturated 3, 4 & 5-membered nitrogen heterocycles should use respectively the traditional "iridine", "etidine" & "olidine" suffix.
Examples

Oxa+irane = Oxirane

Thia+irane = Thiirane

Aza+iridine = Aziridine

Oxa+etane = Oxetane

Thia+etane = Thietane

Aza+etidine = Azetidine

Oxa+olane = Oxolane

Thia+olane = Thiolane

Aza+olidine = Azolidine
Azinane

Azine

Pyridine
In case of substituents, the heteroatom is designated number 1, and the substituents around the chain are numbered so as to have the lowest number for the substituents.

2-Propyloxirane

2-Bromo-3-methylaziridine

2-Bromo-4-ethylthiolane
The compound with the maximum number of noncumulative double bonds is regarded as the parent compound of the monocyclic systems of a given ring size.

Oxirine Azirine Azepine Azocine
Partial Unsaturation

Use fully unsaturated name with dihydro, tetrahydro, etc.

Azepine

2,3-Dihydroazepine

4,5-Dihydroazepine

2,5-Dihydroazepine
When numbering give priority to saturated atoms.

1-Ethyl-4-methyl-4,5-dihydroazepine

1-Ethyl-5-methyl-2,3,4,5-tetrahydroazepine
Heteroatom Prefixes

<table>
<thead>
<tr>
<th>Ring size</th>
<th>Saturated</th>
<th>Unsaturated</th>
<th>Saturated (With Nitrogen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-irane</td>
<td>-irine</td>
<td>-iridine</td>
</tr>
<tr>
<td>4</td>
<td>-etane</td>
<td>-ete</td>
<td>-etidine</td>
</tr>
<tr>
<td>5</td>
<td>-olane</td>
<td>-ole</td>
<td>-olidine</td>
</tr>
<tr>
<td>6</td>
<td>-inane</td>
<td>-ine</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-epane</td>
<td>-epine</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-ocane</td>
<td>-ocine</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-onane</td>
<td>-onine</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-ecane</td>
<td>-ecine</td>
<td></td>
</tr>
</tbody>
</table>
Rings With More Than One Heteroatom
Two or more similar atoms contained in a ring are indicated by the prefixes ‘di-’, ‘tri’, etc.

1,3,5-Triazine

1,2,4-Triazone

If more than one hetero atom occur in the ring, then the heterocycle is named by combining the appropriate prefixes with the ending in Table I in order of their preference, O > S > N.
Oxaziridine

1,3-Thiazole (Thiazole)

1,4,2 - Dithiazine

1,4-Oxazine

3-chloro-5-methyl-1,2,4-oxadiazole
Priority of heteroatoms for numbering purposes:

Highest

O S Se

Lowest

B C N P

Dr. Solomon Derese

SCH 402

31
The ring is numbered from the atom of preference in such a way so as to give the smallest possible number to the other hetero atoms in the ring. As a result, the position of the substituent plays no part in determining how the ring is numbered in such compounds.

4-Methyl-1,3-thiazole
II. Common Names
There are a large number of important ring systems which are named widely known with their non-systematic or common names.

- Furan
- Thiophene
- Pyrrole
- Pyridine
Pyridazine

Indole

Quinoline

Isoquinoline

Coumarin
Pyridine 1,4-Dihydropyridine 2,3-Dihydropyridine
Identical systems connected by a single bond

Such compounds are defined by the prefixes bi-, tert-, quater-, etc., according to the number of systems, and the bonding is indicated as follows:

2,2' - Bipyridine

2,2': 4',3'' - Terthiophene
Naming Heterocycles with fused rings

When naming such compounds the side of the heterocyclic ring is labeled by the letters a, b, c, etc., starting from the atom numbered 1. Therefore side ‘a’ being between atoms 1 and 2, side ‘b’ between atoms 2 and 3, and so on as shown below for pyridine.

[Diagram of pyridine with labeled sides a, b, c, d, e, f]
The name of the heterocyclic ring is chosen as the parent compound and the name of the fused ring is attached as a prefix. The prefix in such names has the ending ‘o’, i.e., benzo, naphtho and so on.

- **Benzo [b] furan**
- **Benzo [b] pyridine**
- **Benzo [c] thiophene**
Benzo [d] thiepine
In a heterocyclic ring, other things being equal, numbering preferably commences at a saturated rather than at an unsaturated hetero atom.

3-Ethyl-5-methylpyrazole

1-Methylnindazole
Handling the “Extra Hydrogen”
Heterocycles with maximum number of double bonds which can be arranged in more than one way.

Examples

Pyrans

- Double bonds @ 2 and 4
- Double bonds @ 2 and 5

Pyrroles

- Double bonds @ 2 and 4
- Double bonds @ 1 and 3
- Double bonds @ 1 and 4

Therefore, should have different names.
This is a special problem resulting from isomerism in the position of the double bonds which is sometimes referred to as “extra-hydrogen” and this can be addressed by simply adding a prefix that indicates the number of the ring atom that possesses the hydrogen using italic capital ‘1H’ ‘2H’ ‘3H’, etc. The numerals indicate the position of these atoms having the extra hydrogen atom.

2H-Pyran

4H-Pyran

The saturated position takes priority in numbering.
1H-Pyrrole (Pyrrole)

3H-Pyrrole

2H-Pyrrole

4-Methyl-2H-oxete

2-Methyl-2H-oxete
Azepine

2H-Azepine

7-Methoxy-3H-azepine

3H-Azepine

4H-Azepine
III. The **Replacement Nomenclature**

In replacement nomenclature, the heterocycle's name is composed of the carbocycle's name and a prefix that denotes the heteroatom.

Thus, "aza", "oxa", and "thia" are prefixes for a nitrogen ring atom, an oxygen ring atom, and a sulfur ring atom, respectively.

Notice that heterocyclic rings are numbered so that the heteroatom has the lowest possible number.
Azacyclopropane
or
Aziridine

Azacyclobutane
or
Azetidine

2-Methylazolididine
or
2-Methylazacyclopentane

2-Methylazacyclohexane
or
2-Methylpiperidine

N-Ethylazacyclopentane
or
N-Ethylpyrrolidine
Oxacyclop propane
or
Oxirane
or
Ethylene oxide

Oxacyclobutane
or
oxetane

Oxacyclopentane
or
Tetrahydrofuran

Thiacyclop propane
or
Thiirane