Chemical composition and antifungal activity of essential oils of *Tagetes* minuta (Asteraceae) against selected phytopathogenic fungi

Martin M. Gakuubi^{1,2}, John M. Wagacha¹, Saifuddin F. Dossaji¹ and Wycliffe Wanzala³

¹School of Biological Sciences, University of Nairobi; ²Department of Biology, Mwenge Catholic University; ³Department of Biological Sciences, Maasai Mara University

INTRODUCTION

- Phytopathogenic fungi cause enormous agricultural losses and are an important constraint to the attainment of food security.
- Management of plant pathogenic fungi has primarily relied on synthetic chemical fungicides.
- The is an urgent need for safe, affordable and eco-friendly alternatives to hazardous synthetic chemical fungicides.

OBJECTIVES

Main objective:

To determine the percentage yield and identity of the chemical composition of *Tagetes minuta* essential oils (EOs) and to evaluate the antifungal activity of the EOS against selected phytopathogenic fungi.

Specific objectives:

- To determine the percentage yields of crude essential oils extracted from leaves, flowers and stems of *Tagetes minuta*.
- To assess the antimicrobial effect of crude essential oils of *Tagetes minuta* against selected phytopathogenic fungi and bacteria.
- To characterize the chemical composition of the essential oils of *Tagetes minuta*.

REFERENCES

Bau, H. J., Cheng, Y., Yu, T. A., Yang, J. S., Yeh, S. D. (2003). Broad-spectrum resistance to different geographic strains of Papaya ringspot virus in coat protein gene transgenic papaya. *Phytopathology* 93 (1): 112–120.

Larrañaga, P., Díaz-Dellavalle, P., Cabrera, A., Alem, D., Leoni, C., Souza, A. L., Salvatore, G. and Dalla-Rizza, M. (2012). Activity of naturally derived antimicrobial peptides against filamentous fungi relevant for agriculture. Sustainable Agriculture Research, 1(2): 211-221.

RESULTS

l. Percentage yield of Tagetes minuta essential oils

Batch No.	Weight of plant material (Kg)	Weight of essential oil (g)	Percentage Yield (% w/w)
1	4.38	2.5883	0.0591
2	4.23	2.5416	0.0601
3	4.60	2.7383	0.0595
4	4.10	2.4115	0.0588
			Mean = 0.0594 ± 0.0003

2. Activity of the essential oils on fungal pathogens

Tagetes minuta EOs showed potent antifungal activity against the test fungal species namely: Aspergillus flavus (A), Aspergillus parasiticus (B), Fusarium solani (C), Aspergillus niger (D) and Fusarium oxysporum (E).

3. Chemical composition of the essential oils of Tagetes minuta

- Twenty compounds corresponding to 96% of the total essential oil and constituting a mixture of monoterpenes (70%) and sesquiterpenes (30%) were identified.
- The most abundant components were: (E)-Tagetone (11.8%) dihydrotagetone (10.7%), Allo-ocimene (8.8%) and (Z)-β-Ocimene (7.0%).
- Two sesquiterpenes; Elixene and Silphiperfol-6-ene are being reported for the first time in EOS of *T. minuta*.

CONCLUSION

- The study demonstrated promising antifungal activity of *T. minuta* essential oils against the test fungi.
- The EOs have potential use as biopesticides and as alternative to synthetic fungicides.
- Further studies required to evaluate the applicability of the EOs in management of phytopathogenic fungi under field conditions.

