Modelling of covid-19 transmission in kenya using compound poisson regression model

Citation:
Joab O Odhiambo, Ngare P, Weke P, Otieno RO. "Modelling of covid-19 transmission in kenya using compound poisson regression model." Journal of Advances in Mathematics and Computer Science. 2020; 35(2):101-111.

Abstract:

Since the inception of the novel Corona Virus Disease-19 in December in China, the spread has been massive leading World Health Organization to declare it a world pandemic. While epicenter of COVID-19 was Wuhan city in China mainland, Italy has been affected most due to the high number of recorded deaths as at 21st April, 2020 at the same time USA recording the highest number of virus reported cases. In addition, the spread has been experienced in many developing African countries including Kenya. The Kenyan government need to make necessary plans for those who have tested positive through self-quarantine beds at Mbagathi Hospital as a way of containing the spread of the virus. In addition, lack of a proper mathematical model that can be used to model and predict the spread of COVID-19 for adequate response security has been one of the main concerns for the government. Many mathematical models have been proposed for proper modeling and forecasting, but this paper will focus on using a generalized linear regression that can detect linear relationship between the risk factors. The paper intents to model and forecast the confirmed COVID-19 cases in Kenya as a Compound Poisson regression process where the parameter follows a generalized linear regression that is influenced by the number of daily contact persons and daily flights with the already confirmed cases of the virus. Ultimately, this paper would assist the government in proper resource allocation to deal with pandemic in terms of available of bed capacities, public awareness campaigns and virus testing kits not only in the virus hotbed within Nairobi capital city but also in the other 47 Kenyan counties.

Website

UoN Websites Search