W_2-RECURRENT LP-SASAKIAN MANIFOLD

G. P. Pokhariyal, S. K. Moindi and B. M. Nzimbi

School of Mathematics
College of Biological and Physical Sciences
University of Nairobi
P.O. Box 30197
Nairobi, Kenya

e-mail: pokhariyal@uonbi.ac.ke
moindi@uonbi.ac.ke
nzimbi@uonbi.ac.ke

Abstract

In this paper, we study the properties of the W_2-recurrent LP-Sasakian manifold. We prove symmetric and skew-symmetric properties of the W_2-curvature tensor.

1. Introduction

In this paper, we shall study the W_2-recurrent LP-Sasakian manifold. An n-dimensional real differentiable manifold M_n is said to be Lorentzian Para (LP)-Sasakian manifold if it admits a $(1,1)$ tensor field F, a C^∞ vector field T, a C^∞ 1-form α and a Lorentzian metric g which satisfy (Mishra [2]):

© 2013 Pushpa Publishing House
2010 Mathematics Subject Classification: Primary 53B30, 53C50; Secondary 53C25.
Keywords and phrases: LP-Sasakian manifold, W_2-curvature tensor.
Communicated by K. K. Azad
Received December 10, 2011; Revised March 30, 2012
\[A(T) = -1, \]
\[\overline{X} = X + A(X)T, \]
\[g(\overline{X}, \overline{Y}) = g(X, Y) + A(X)A(Y), \]
\[g(X, T) = A(X), \ D_X T = \overline{X}, \]
\[(D_X F)(Y) = \{g(X, Y) + A(X)A(Y)\}T + \{X + A(X)\}A(Y), \]

where \(\overline{X} = F(X) \).

In an LP-Sasakian manifold \(M_n \) with structure \((F, T, A, g) \), it can be seen that (Pokhariyal [5]):

\[\overline{T} = 0, \ A(X) = 0, \]
\[\text{rank}(F) = n - 1. \]

Moreover, if we put

\['F(X, Y) = g(\overline{X}, Y), \]
then the tensor \('F(X, Y) \) is symmetric in \(X \) and \(Y \).

In an \(n \)-dimensional LP-Sasakian manifold with the structure \((F, T, A, g) \), we have the Riemannian curvature tensor as:

\[R(X, Y, Z, T) = g(Y, Z)A(X) - g(X, Z)A(Y), \]

where \(g(X, Z) \) is the metric tensor representing potential and

\[Ric(X, Y) = g(QX, Y), \]
is the Ricci tensor representing the matter tensor. Pokhariyal and Mishra [3] have defined a tensor

\['W_2(X, Y, Z, U) \]
\[= 'R(X, Y, Z, U) + \frac{1}{(n - 1)}[g(X, Z)Ric(Y, U) - g(Y, Z)Ric(X, U)] \]

to study its physical and geometric properties. This tensor is skew-symmetric.
in X and Y. Breaking this tensor into skew-symmetric and symmetric parts, on contraction vanishes in an Einstein space. This allows Pirani formulation of gravitational waves to the Einstein space with the help of skew-symmetric part (Pokhariyal [7]). However, W_2 does not satisfy the cyclic property.

2. W_2-LP Sasakian Manifold

In this section, we study some of the geometrical properties of W_2-curvature tensor which is recurrent on LP-Sasakian manifold M_n in a Sasakian manifold.

If we consider an LP-Sasakian manifold M_n which is W_2-recurrent, then we have (Pokhariyal [4])

$$(D_U W_2)(X, Y)Z = B(U)W_2(X, Y)Z,$$

(2.1)

where B is a non-zero 1-form and W_2 curvature tensor is given by

$$W_2(X, Y)Z = R(X, Y)Z + \frac{1}{(n-1)}[g(X, Y)QY - g(Y, Z)QX].$$

(2.2)

It is noted that Q is the symmetric endomorphism of the tangent space at each point to the Ricci tensor

$$QX = (n-1)X.$$

(2.3)

It is shown by De and Guha [1] that if in a Riemannian manifold (2.1) holds, then

$$R(X, Y)W_2(Z, U)V = 0,$$

(2.4)

where $R(X, Y)Z$ is simply the derivation of the tensor algebra at each point of M_n for its tangent vectors.

Using (1.4), we have

$$W_2(X, Y, Z, T) = g(W_2(X, Y)Z, T) = A(W_2(X, Y)Z).$$

(2.5)
Further use of (2.2) gives

\[A(W_2(X, Y)Z) = g(Y, Z)A(X) - g(X, Z)A(Y) \]
\[+ \frac{1}{(n-1)} [g(X, Z)g(QY, T) - g(Y, Z)g(QX, T)] \]
\[= g(Y, Z)A(X) - g(X, Z)A(Y) \]
\[+ \frac{1}{(n-1)} [(n-1)A(Y)g(X, Z) - (n-1)A(X)g(Y, Z)] \]
\[= g(Y, Z)A(X) - g(X, Z)A(Y) \]
\[+ g(X, Z)A(Y) - g(Y, Z)A(X) \]
\[= 0. \quad (2.6) \]

This result holds for all vector fields \(X, Y, Z \).

Theorem 2.1. The LP-Sasakian manifold which is \(W_2 \)-reCURRENT with \(R(X, Y)W_2(Z, U)V = 0 \), is a \(W_2 \)-symmetric manifold.

Proof. From the above equation (2.6),

\[- W_2(Z, R(X, Y)U)V - W_2(Z, U)R(X, Y)V \]
\[= 0. \quad (2.7) \]

Using (1.4), we get

\[g(R(T, Y)W_2(Z, U)V, T) - g(W_2(Z, U)R(T, Y)V, T) = 0, \]
\[-g(W_2(Z, R(T, Y)UV, T) - g(W_2(Z, U)R(T, Y)V, T) = 0. \]

Expanding the terms and using (2.4), we get

\[^{1}R(T, Y, W_2(Z, U)V, T) \]
\[= A(T)W_2(Z, U, Y) - A(T)A(W_2(Z, U)V) = -W_2(Z, U, V, Y). \quad (2.8) \]
W_2-recurrent LP-Sasakian Manifold

$\mathcal{W}_2(R(T, Y)Z, U, V, T) - g(U, V)Ric(R(T, Y)Z, T)$

$= \mathcal{R}(R(T, Y)Z, U, V, T) + \frac{1}{(n-1)}\{-g(R(T, Y)Z, V)Ric(U, T)\}$

$= A(R(T, Y)Z)g(U, V) - A(U)R(T, Y, Z, V)$

$+ (n-1)/(n-1)\{A(U)R(T, Y, Z, V) - g(U, V)A(R(T, Y)Z)\}$

$= A(R(T, Y)Z)g(U, V) - A(U)R(T, Y, Z, V)$

$+ A(U)R(T, Y, Z)V - g(U, V)A(R(T, Y)Z)$

$= 0$, \hspace{1cm} (2.9)

$\mathcal{W}_2(Z, U, R(T, Y)V, T)$

$= \mathcal{R}(Z, R(T, Y)V, T) + \frac{1}{(n-1)}\{g(Z, R(T, Y)V)Ric(U, T)\}$

$- g(U, V)Ric(R(T, Y)Z, T))$

$= A(R(T, Y)Z)g(U, V) - A(U)R(T, Y, V, Z)$

$+ \frac{n-1}{n-1}\{A(U)R(T, Y, V, Z) - A(Z)R(T, Y, V, U)\}$

$= 0$, \hspace{1cm} (2.10)

$W_2(Z, R(T, Y)U, T)$

$= \mathcal{W}_2(Z, T, V, T)g(Y, U) - A(U)\mathcal{W}_2(Z, Y, V, T)$

$= g(Y, U)\left\{\mathcal{R}(Z, T, V, T) + \frac{1}{n-1}\left[g(Z, V)Ric(T, T) - g(T, V)Ric(Z, T)\right]\right\}$

$- A(\mathcal{W}_2(Z, Y)V)\right\}$

$= g(Y, U)\{A(Z)A(V) - A(T)g(Z, V)\}$

$+ \frac{1}{n-1}\{-(n-1)g(V, Z) - (n-1)A(V)\} - A(\mathcal{W}_2(Z, Y)V)$
= g(Y, U)\{A(Z)A(V) + g(Z, V) - A(Z)A(V) - g(Z, V)\}

= 0 - 0

= 0, \quad (2.11)

since \(A(W_2(Z, Y)V) = 0\).

From (2.5) and on adding all the above terms, we have

\[-'W_2(Z, U, V, Y) = 0, \quad \Rightarrow 'W_2(Z, U, V, Y) = 0. \quad (2.12)\]

Theorem 2.2. The \(W_2\)-symmetric recurrent LP-Sasakian manifold is a manifold of constant scalar curvature and its curvature is given by \(r = n(n - 1)\).

Proof. Let \(\{e_i\}, \ i = 1, 2, ..., n\) be an orthonormal basis of the tangent space at any point. Then the sum for \(1 \leq i \leq n\) of the relation is given by

\['W_2(Z, U, V, Y) = 'R(Z, U, V, Y) + \frac{1}{(n - 1)}\{g(Z, V)Ric(U, V)Ric(Z, Y)\}.

When \(Z = Y = e_i\), then we have

\['W_2(e_i, U, V, e_i)

= 'R(e_i, U, V, e_i) + \frac{1}{n - 1}\{g(e_i, V)Ric(U, e_i) - g(U, V)Ric(e_i, e_i)\}.

Using (2.9), we have

\['R(e_i, U, V, e_i) = \frac{1}{n - 1}\{g(U, V)Ric(e_i, e_i) - g(e_i, V)Ric(U, e_i)\}

\['R(e_i, U, V, e_i) = \frac{1}{n - 1}\{2mg(e_i, e_i)g(U, V) - nRic(U, V)\}.

Now using the expansion for \('R\), we have

\['R(e_i, U, V, e_i) = 0, \quad \Rightarrow 0 = \frac{1}{n - 1}\{2nmg(U, V) - nRic(U, V)\}.

That is, \(Ric(U, V) = 2mg(U, V)\), which on contraction gives \(r = n(n - 1)\).
3. Symmetric and Skew-symmetric Parts of W_2-tensor

Let P and Q be the skew-symmetric and symmetric parts of W_2 tensor, with respect to U and Z. These parts are defined as

$$P(X, Y, Z, U) = \frac{1}{2} \{ W_2(X, Y, Z, U) - 'W_2(X, Y, Z, U) \} = 'R(X, Y, Z, U)$$

$$+ \frac{1}{2(n-1)} \{ g(X, Z)Ric(Y, U) - g(Y, Z)Ric(X, U)$$

$$- g(X, U)Ric(Y, Z) + g(Y, U)Ric(Y, Z) \}, \tag{3.1}$$

$$Q(X, Y, Z, U) = \frac{1}{2} \{ W_2(X, Y, Z, U) + 'W_2(X, Y, U, Z) \} = \frac{1}{2(n-1)} \{ g(X, Z)Ric(Y, U) - g(Y, Z)Ric(X, U)$$

$$+ g(X, U)Ric(Y, Z) - g(Y, U)Ric(X, Z) \}. \tag{3.2}$$

Theorem 3.1. An LP-Sasakian manifold which is P-symmetric is necessarily a space of constant scalar curvature and its scalar curvature is $r = n(n-1)$.

Proof. If an LP-Sasakian manifold is P-symmetric, then

$$D_U P(X, Y) Z = P(X, Y, Z, U) = 0.$$

That is,

$$0 = 'R(X, Y, Z, U) + \frac{1}{2(n-1)} \{ g(X, Z)Ric(Y, U) - g(Y, Z)Ric(X, U) \}$$

$$= A(R(T, Y) Z) g(U, V) - A(U) R(T, Y, Z, V).$$

Now putting $X = U = e_i$, $i = 1, 2, ..., n$, we have

$$0 = 'R(e_i, Y, Z, e_i) + \frac{1}{2(n-1)} \{ g(e_i, Z)Ric(Y, e_i) - g(Y, Z)Ric(e_i, e_i)$$

$$- g(e_i, e_i)Ric(Y, Z) + g(Y, e_i)Ric(e_i, Z) \}. $$
That is,

\[0 = 'R(e_i, Y, Z, e_i) \]

\[+ \frac{1}{2(n-1)} \{ n \text{Ric}(Y, Z) - 2nmg(Y, Z) - n \text{Ric}(Y, Z) + n \text{Ric}(Y, Z) \} \]

or

\['R(e_i, Y, Z, e_i) = \frac{-1}{2(n-1)} \{ n \text{Ric}(Y, Z) - 2nmg(Y, Z) \}. \]

But

\['R(e_i, Y, Z, e_i) = g(e_i, Y)g(Z, e_i) - g(Y, Z)g(e_i, e_i) \]

\[= g(Y, Z) - g(Y, Z) = 0. \]

Thus from the above, we have

\[0 = \frac{-1}{2(n-1)} \{ n \text{Ric}(Y, Z) - 2nmg(Y, Z) \} \Rightarrow \text{Ric}(Y, Z) = 2mg(Y, Z), \]

which again on transvecting, gives \(r = 2nm = n(n-1), \) where \(n = 2m + 1. \)

Theorem 3.2. An LP-Sasakian manifold which is Q-symmetric is a space of constant scalar curvature and its scalar curvature is \(r = n(n-1). \)

Proof. If an LP-Sasakian manifold is Q-symmetric, then we have

\[D_U Q(X, Y)Z = Q(X, Y, Z, U) \]

\[= 0 \]

\[= \frac{1}{2(n-1)} \{ g(X, Z) \text{Ric}(Y, U) - g(Y, Z) \text{Ric}(X, U) \]

\[+ g(X, U) \text{Ric}(Y, Z) - g(Y, U) \text{Ric}(X, Z) \}. \]

Putting \(X = U = e_i, i = 1, 2, ..., n \) in the above equation, we have
W_2-recurrent LP-Sasakian Manifold

$$0 = \frac{1}{2(n-1)} \{ g(e_i, Z)Ric(Y, e_i) - g(Y, Z)Ric(e_i, e_i) \\
+ g(e_i, e_i)Ric(Y, Z) - g(Y, e_i)Ric(e_i, Z) \}$$

$$= \frac{1}{2(n-1)} \{ nRic(Y, Z) - 2nmg(Y, Z) + nRic(Y, Z) - nRic(Y, Z) \}$$

or

$$nRic(Y, Z) - 2nmg(Y, Z) = 0 \Rightarrow Ric(Y, Z) = 2mg(Y, Z).$$

Transvecting this Ricci tensor, we have $r = n(n-1) = 2nm$, where $n = 2m + 1$.

Remark. The contracted part of the skew-symmetric part of W_2 vanishes identically and we use this to extend the Pirani formulation of gravitational waves to an Einstein space like W_{12} (Pokhariyal [6]). The non-vanishing of the divergence of complexion vector shows that we cannot use this tensor to reduce the electromagnetic field to purely electric field.

Acknowledgements

The authors would like to thank DAAD (German Academic Exchange Service) and the International Science Programme (ISP) and the Eastern Africa Universities Mathematics Programme (EAUMP) for the financial support during the writing of this paper.

References

G. P. Pokhariyal, S. K. Moindi and B. M. Nzimbi

