RESEARCH

Open Access

Effect of piospheres on physio-chemical soil I CrossMark properties in the Southern Rangelands of Kenya

S. O. Jawuoro^{*}, O. K. Koech, G. N. Karuku and J. S. Mbau

Abstract

Introduction: Water-based interventions haphazardly introduced in the drylands of Kenya have led to the introduction of piospheres used as concentration mounts. Not much is known about the effect of these piospheres on soil physio-chemical properties, especially in the Kenyan rangelands where the government and other development agencies have created piospheres aimed at curbing water shortages and sustaining livestock production. The study assessed the effect of piospheres on soil physio-chemical characteristics in the southern rangelands of Kajiado, Kenya, in order to provide evidence-based insights that will be useful in guiding future water interventions.

Methods: Soil samples were collected within 0.25-m² plots at 20-m intervals along 100-m transects from three piospheres (a dam, a trough, and a seasonal river). Two-way ANOVA was used to determine if there were significant differences in soil parameters between piospheric distances.

Results: Soil bulk density significantly different between piospheric distances (F = 22.25, P = 0.001) and piospheres (F = 13.10, P = 0.002), being highest at 20 m from the trough (1.1–1.21 gcm⁻³) relative to a similar distance from the dam $(1.01-1.20 \text{ gcm}^{-3})$ and the river $(1.1-1.17 \text{ gcm}^{-3})$. On the other hand, mean soil aggregate stability significantly increased (F = 66.89, P = 0.001) with piospheric distance, being lowest at 20 m from the trough (43.9–46.2%), the dam (43.1-48.9%), and the river (46.6-47.5%).

Conclusions: High soil bulk density and consequent low soil porosity, hydraulic conductivity, and moisture content demonstrated that grazing was high near the piospheres. It is recommended that livestock should be herded away from the piospheres after drinking water to ensure that grazing livestock spend less time near the piospheres if reduced soil compaction is to be realized. Piospheres should also be better planned and placed at landscape level to exploit landscape heterogeneity.

Keywords: Piospheres, Grazing pressure, Bulk density, Hydraulic conductivity, Rangelands

Introduction

Piospheres create an attenuating pattern form of grazing as a result of concentrated activity around them thereby developing a unique source of analysis of range trend and condition distinct from other environmental factors (Brooks and Matchett 2006; Todd 2006). Several studies have revealed that piospheres, created to curb water scarcity in most rangelands across the world, have adverse effects on both soil and vegetation (Brooks and Matchett 2006; Landman et al. 2012; Shahriary et al. 2012).

* Correspondence: stanleyjawuoro@gmail.com

Department of Land Resource Management and Agricultural Technology (LARMAT), University of Nairobi, P.O. Box 29053-00625, Nairobi, Kenya

Concentrated grazing around these piospheres leads to excessive trampling which causes soil compaction, increasing soil bulk density and reducing soil porosity in the process (Gomez et al. 2006; Stankovičová et al. 2008). Reduced soil pore volume impedes percolation of water through the soil hence low soil moisture levels (Chaichi et al. 2005). Compacted soils hamper air and water circulation, hinder root penetration into the soil, and limit seed germination and seedling establishment in the rangelands (Amiri et al. 2008; Azarnivand et al. 2010). Grazing animals also alter soil nutrient and chemical composition through deposition resulting from urination and defecation (Shahriary et al. 2012). Dung deposition has

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made

been known to influence soil organic carbon and total nitrogen concentrations (Han et al. 2008; Ingram et al. 2008) in addition to altering soil pH and soil microbial activity (Bell 2010; Alaoui et al. 2011).

Research has not conclusively established the effect of piospheres on physical and chemical properties of the soil. Therefore, there is need for conclusive insights on the piospheric effect on soil physio-chemical characteristics because such information is useful in developing sustainable water interventions for improved water availability in the rangelands. These findings will particularly be relevant in Kenyan rangelands where there is widespread introduction of piospheres to alleviate water scarcity (Wahome et al. 2014). Research on piospheric effect on soils has been done in parts of East Africa and Asia (Shahriary et al. 2012; Anthony et al. 2015). A study conducted by Anthony et al. (2015) in the Karamoja subregion of Uganda showed low levels of nitrogen near the piospheres. On the contrary, Shahriary et al. (2012) reported a high concentration of nitrogen near the piospheres of Iran. The disparity observed in these findings could be because of the varying residence time spent by grazing animal around the piospheres as a result of, among other factors, different grazing regimes (Sternberg 2012), differences in piosphere types and location which determine the patterns of landscape use by grazing animals (Anthony et al. 2015) and differential response of various soil types upon exposure to grazing (Sun et al. 2011; Schrama et al. 2013). This study therefore sought to assess the effect of piospheres on soil physical and chemical characteristics in the Southern rangelands of Kenya and their predisposing factors.

Methods

Study area

The study was done in Kiserian, Kajiado County, Kenya. The County is located between 36° 5' and 37° 5' East and 1° and 3° South (Fig. 1). The altitude ranges from 1580 to 2460 masl. Kiserian is found in agro-ecological zone IV and is therefore a semi-arid region. Rainfall is generally low, bimodal and highly varying across the county. The average annual rainfall ranges between 327 and 1576 mm.yr. The short rains are received during November-December $(30.97 \pm 27.85\%)$ of the annual total) whereas the long rains fall from March to May $(47.5 \pm 15.06\%)$ of the annual total). The dry season spans from June to September. Droughts are long and frequent, and are majorly associated with failure of the short rains. Temperatures range between 12° C and 34° C, are coolest from July to August and hottest from November to April. Both the minimum (by 1.81 ± 0.46 °C between 1961 and 2013) and maximum (0.275 °C annual difference between 1976 and 2001) temperatures are rising in the county (Ogutu et al. 2013). The ratio of

rainfall to evapotranspiration is <0.65 (Middleton and Thomas 1997). The main soil type in Kiserian is vertisol which is sticky when wet and forms large cracks when dry (Ombogo 2013). Acacia mellifera, Acacia tortilis, Acacia nubica, Acacia ancistroclada, Acacia nilotica, Commiphora riparia, Commiphora africana, and Balanites aegyptiaca are the most common species (Bekure 1991).

Research design

A randomized block design was used for this research with four watering points forming blocks while plots (5) were the distances (treatments) from water points. Quadrats (0.5 m by 0.5 m) were the main sampling points, placed at intervals of 20 m, 40, 60, 80, and 100 m within a 100-m transect from the watering point. Each treatment was replicated four times in the East, West, North, and South directions from the watering points. Two troughs, a dam and a river, were selected for study. The troughs were smaller in size compared to the dam and could have an impact by increasing grazing pressure around it due to greater animal concentration. The dam was large in size and thus could reduce grazing impact around it because of its large surface area that enabled animals even distribution. The river, being a natural water source, was used as a control, providing the basis for comparison between introduced systems and natural systems.

Soil sampling and laboratory analysis

Both disturbed and undisturbed soil samples were collected for analysis. Disturbed soil samples were collected using a 600 cm³ soil auger at a depth of 20 cm. Four samples were taken from the corners and centre of each quadrat and then mixed in a bucket to form a composite sample for each replication. These composites were divided into four segments where one segment was picked to form a representative sub-sample of 125 g. This procedure was repeated for all replications until a representative sample of 500 g was obtained. These representative samples were air-dried at room temperature for 72 h, ground and sieved through 2 mm mesh to remove plant roots, stones and organic residues. These samples were used for texture and pH determination. For texture and pH determination a 2 mm sieve was used because soil samples >2 g were required for analysis. Further sieving was done using a 0.5-mm sieve. This was to enhance soil sample homogeneity since <2 g of the soil sample was required for analysis (Brenner and Mulvaney 1982; Buresh et al. 1982). The samples obtained were used for organic carbon and total nitrogen determination. Undisturbed soil samples were obtained at the same depth using steel core rings for bulk density, porosity and saturated hydraulic conductivity determination.

Soil organic carbon concentration was determined using Walkley-Black wet oxidation method as described by Nelson and Sommers (1982), while total nitrogen was determined using Kjeldahl digestion method (Brenner and Mulvaney 1982). Bulk density was estimated using the core method after oven drying the soil at 105° c for 48 h (McKenzie et al. 2004), and was calculated by dividing the mass of dry weight of soil (g) by the soil volume (cm^3) . From the bulk density values obtained, porosity, f, was calculated in accordance with Flint and Flint (2002) using the formula $1-\frac{\rho_b}{\rho_s}$ where, ρ_b is bulk density and ρ_s the particle density taken as 2.65 g cm⁻³. Particle size distribution was analyzed using the hydrometer method after dispersing soil and eliminating organic matter (Day 1965), and pH-H₂O (ratio 1:2.5) by a pH meter (Mclean 1982). Aggregate stability was determined by the wet sieving method while soil moisture content was determined by gravimetric method. Saturated soil hydraulic conductivity was determined by the constant head permeameter described by Reynolds and Elrick (2002) based on application of Darcy equation. A hydraulic head difference was imposed on the soil column and the resulting flux of water measured.

$$Conductivity = \frac{V.L}{A.T.H}$$

, where V = volume of water(Q) that flows through the sample of cross sectional area (A) in time T and H is the hydraulic head difference imposed across a sample length (L).

Statistical analysis

Statistical analyses for soil parameters were performed using GenStat 15th edition. Two-way ANOVA was used to determine if there were significant differences between means of various treatments and seasons. Tukey's HSD test was used to compare the means. Significance was obtained at $P \le 0.05$.

Results and discussion

Soil bulk density

Table 1 shows soil bulk density, porosity, saturated hydraulic conductivity, aggregate stability, and soil moisture content at various distances from the dam, the trough, and the seasonal river. Soil bulk density significantly decreased (F = 25.07, P = 0.001) with piospheric distance and was significantly different (F = 13.10, P = 0.002) between piospheres. Troughs were smaller in size compared to the dam. Therefore, the surface area available for grazing animals was reduced leading to greater compaction. Due to the fact that the main soil type was vertisols, bulk density was significantly different between seasons (F = 5.92, P = 0.035), being higher during the wet

	1 2 1				•	,					
	Wet season			Dry season							
Piosphere	Distance (m)	BD (gcm ⁻³)	%Porosity	K-Sat	% SA	%MC	BD (gcm ³)	Porosity	K-sat	SA	%MC
Dam	20	1.20b	55.84a	0.04a	43.05a	20.90a	1.09c	58.86a	0.05a	48.86a	18.90a
	40	1.07ab	59.24ab	0.07a	46.52ab	25.40ab	1.06bc	60.00ab	0.07a	50.00a	21.10a
	60	1.05ab	60.00b	0.13b	50.30bc	25.80b	1.06ab	60.00ab	0.11ab	46.17a	19.60a
	80	1.02a	60.37bc	0.13b	50.81c	26.20bc	1.05ab	60.37b	0.12b	50.37a	20.40a
	100	1.01a	61.13c	0.33c	51.80d	30.70c	1.03a	61.13c	0.29c	51.13a	20.60a
Trough	20	1.23c	53.66a	0.11a	43.92a	18.40a	1.19c	56.23a	0.11a	46.23a	11.60a
	40	1.19bc	55.09ab	0.13a	44.53a	21.90ab	1.16bc	56.43ab	0.12a	46.42a	11.90a
	60	1.16ab	56.41b	0.19b	50.31b	24.20b	1.14bc	57.17b	0.20a	47.17ab	12.60ab
	80	1.09ab	58.87bc	0.94c	50.31b	26.10bc	1.11b	58.11bc	0.89b	48.11ab	12.80ab
	100	1.07a	59.81c	5.15d	56.98c	31.80c	0.96a	63.96c	4.68c	53.96b	16.50b
River	20	1.17c	54.72a	0.03a	47.54a	20.10a	1.2d	56.61a	0.02a	46.61a	11.50a
	40	1.08ab	59.62ab	0.11ab	48.89ab	21.20a	1.07c	59.64b	0.11a	49.64b	11.60a
	60	1.06b	60.37b	0.39b	49.25bc	22.60ab	1.02b	61.52bc	0.37a	51.52bc	11.90a
	80	1.05b	61.51bc	4.64c	50.87c	23.10b	1.01b	61.89bc	4.68b	51.89bc	12.60ab
	100	1.00a	61.89c	5.81d	55.85d	25.10c	0.89a	66.41c	5.92c	56.41c	13.70b
	LSD	0.05	2.04	3.17	3.74	5.54	0.82	2.93	2.17	3.87	6.95

Table 1 Soil physical properties at various piospheric distances (in meters)

Means with the same letters within a column are not significantly different ($P \le 0.05$)

Key: BD = Soil bulk density; K-sat = saturated hydraulic conductivity; %SA = Soil aggregate stability; %MC = Soil moisture content

season as a result of greater compaction. During the dry, season vertisols become hard and crack, making it difficult to compact even under heavy grazing. The interactions between treatments (distance × season × piosphere) were, however, not significant (F = 0.52, P = 0.818).

The results demonstrate greater compaction around zones of high intensity grazing. Arnhold et al. (2015) observed increased soil bulk densities in areas where high intensity grazing was applied in the Lambwe Valley of Kenya. Similarly, Shahriary et al. (2012) and Anthony et al. (2015) reported increased trampling and soil compaction around the piospheres of Iran and Uganda, respectively. The findings of this study also corroborate with those of Smet and Ward (2006) who reported high soil compaction levels around South African piospheres.

Saturated hydraulic conductivity and soil moisture content

Saturated hydraulic conductivity significantly increased (F = 1084.51, P < 0.001) with piospheric distance, being higher away from the piospheres. This could be attributed to high compaction levels that reduced soil porosity inhibiting percolation of water into the soil, further exacerbated by high animal trampling which reduced plant cover and exposed the soil to solar radiation triggering moisture loss through evaporation. No significant difference was observed in saturated hydraulic conductivity between the piospheres (F = 2.53, P = 0.294) and seasons (F = 1.07, P = 0.326). The interactions between treatments

(distance × season × piosphere) were also not significant (F = 0.60, P = 0.762). Due to the low infiltration near the piospheres, soil moisture content was significantly lower (F = 16.94, P < 0.001) near the piospheres. No significant difference (F = 0.26, P = 0.618) was observed in soil moisture content between piospheres. Higher rainfall during the wet season increased moisture input into the soil as compared to the dry season. Consequently, soil moisture content was significantly higher (F = 256.76, P < 0.001) during the wet season. The interactions between treatments were not significant (F = 1.57, P = 0.247).

These findings corroborate with those of Zhang et al. (2006) and Azarnivand et al. (2010) that high soil compaction reduced water infiltration in the loess soils of China and the rangelands of Hosainabad, respectively. Amiri et al. (2008) also observed higher soil moisture content in light and moderately grazed lands compared to areas under heavy grazing intensity in the rangelands of Isfahan.

Soil aggregate stability

Soil aggregate stability significantly increased (F = 66.89, P < 0.001) with piospheric distance, though there was no significant difference (F = 3.43, P = 0.073) between piospheres. Because the soil class type was mainly sandy clay loam, soil was highly disintegrated during the wet season when sticky as opposed to dry season when it cracked. The aggregate stability of the soils was thus therefore significantly lower during the wet season (F = 698.41, P < 0.001).

The interactions between treatments (distance × season × piosphere) were not significant (F = 1.55, P = 0.254).

Heavy grazing reduces soil aggregate stability due to high compaction. Animal trampling reduces plant cover thereby exposing the soil to direct raindrops which disintegrate soil particles (Wasonga 2009; Mugerwa and Emmanuel 2014). This could be the probable reason for the low aggregate stability observed near the piospheres. Alphayo (2015) also observed low soil aggregate stability under high intensity grazing in Laikipia County, Kenya. Similarly, Azarnivand et al. (2010) and Cournane et al. (2010) reported low soil aggregate stability under heavy grazing compared Hosainabad and Otago rangelands, respectively.

Soil textural characteristics

Table 2 shows soil textural characteristics, soil organic carbon, total nitrogen, and pH at various distances from the dam, the trough, and the river. The soil textural class was sandy clay loam across all the piospheres. Sand content was higher near the piospheres although the difference between piospheric distances was not significant (F = 2.73, P = 0.090). Besides, the difference in sand content was not significantly different between piospheres (F = 1.79, P = 0.217) and seasons (F = 0.86, P = 0.574). The interactions between treatments (distance × season × piosphere) were also not significant (F = 0.01, P = 1.000).

Clay content significantly increased (F = 14.43, P < 0.001) with distance from the piospheres. The difference

various treatments (distance × season × piosphere) were

also not significant (F = 0.01, P = 1.000). The high sand content near the piospheres could be attributed to increased degradation around the piospheres that exposed the soil to erosion. Fine particles of clay and silt were thus carried off by either wind or water erosion, justifying the significantly higher clay content observed away from these piospheres. Similar observations were made by Al-Seekh et al. (2009) who reported higher percentage of sand in grazed areas compared to un-grazed and mildly grazed sites in the rangelands of Hebron in Palestine. Pei et al. (2008) also observed higher sand content in degraded rangelands relative to enclosures of Palestine. In addition, Mohammed (2000) reported that overgrazing in the southern West Bank resulted in severe soil erosion that caused the soil to lose its silt and clay and increase sand content.

Soil organic carbon and total nitrogen

A significantly higher (F = 17.24, P < 0.001) soil organic carbon was recorded near the piospheres, being highest at a piospheric distance of 20 m. There was, however, no significant difference in soil organic carbon between piospheres (F = 0.77, P = 0.489) and seasons (F = 0.95, P = 0.520). Moreover, the interactions

Table 2 Soil textural properties, organic carbon, nitrogen and pH at various piospheric distances

Piosphere	Wet Season								Dry season						
	Distance(m)	% Sand	% Clay	% Silt	% OC	% N	рН	%Sand	% Clay	% Silt	% OC	% N	рН		
Dam	20	65.40c	28.50a	6.10a	2.92d	0.35b	6.46b	64.60c	28.62a	6.78a	3.01d	0.36b	6.42b		
	40	62.80b	32.50ab	4.70a	2.74cd	0.33ab	6.03b	62.84bc	32.57ab	4.59a	2.69cd	0.31ab	6.04b		
	60	62.60b	34.50bc	2.90a	2.58bc	0.24ab	5.85ab	62.71bc	34.29bc	3.01a	2.54cd	0.21a	5.88ab		
	80	62.60b	34.50bc	2.90a	2.56ab	0.14ab	5.85ab	61.90b	34.51bc	3.59a	2.59bc	0.21a	5.72a		
	100	55.80a	36.50c	7.70a	2.43a	0.09a	5.75a	55.80a	36.50c	7.71a	2.33ab	0.21a	5.66a		
Trough	20	61.50b	29.50a	9.01a	3.21d	0.43c	6.32b	61.50b	32.50a	6.01a	3.14d	0.37b	6.43b		
	40	60.40b	31.60ab	8.02a	3.21d	0.26b	6.07ab	61.21b	34.60ab	4.19a	3.07cd	0.33ab	6.08b		
	60	58.70ab	34.30bc	7.01a	3.15cd	0.23ab	5.92ab	58.75ab	35.32bc	5.93a	2.96bc	0.25ab	5.94ab		
	80	57.64ab	35.20bc	7.16a	2.98ab	0.22ab	5.88ab	57.37ab	38.50bc	4.13a	2.89ab	0.20a	5.89a		
	100	55.82a	36.90c	7.28a	2.92a	0.19a	5.71a	55.72a	40.50c	3.67a	2.85a	0.18a	5.76a		
River	20	64.92c	28.60a	9.80a	3.42c	0.23ab	6.37b	64.92c	26.50a	8.58a	3.24d	0.25b	6.26c		
	40	63.21c	29.50a	7.19a	3.02bc	0.23ab	6.05b	61.21bc	29.50ab	9.28a	2.91cd	0.24b	6.03b		
	60	60.30bc	32.10b	9.29a	2.92ab	0.22ab	5.87ab	59.89bc	32.10bc	9.01a	2.88bc	0.21a	5.93ab		
	80	58.5b	32.50bc	9.10a	2.53ab	0.21a	5.81a	57.90b	32.50bc	9.60a	2.61ab	0.23a	5.85a		
	100	54.70a	35.50c	9.80a	2.28a	0.21a	5.69a	54.81a	35.46c	10.69a	2.41a	0.19a	5.82a		
	LSD	7.15	6.02	5.33	0.66	0.16	0.33	5.51	4.2	4.79	0.28	0.04	0.27		

Means with the same letters within the same column are not significantly different ($P \le 0.05$; Soil Textural Class = Sandy Clay Loam Key: OC = Soil organic carbon; N = Total Nitrogen

between treatments (distance × season × piosphere) were not significant (F = 1.38, P = 0.309).

Similarly, total nitrogen significantly decreased (F = 3.90, P = 0.037) with piospheric distance. No significant difference was however observed in total nitrogen between piospheres (F = 0.74, P = 0.503), seasons (F = 3.55, P = 0.089), and the interactions between the treatments of distance × season × piosphere (F = 0.73, P = 0.663).

It was observed that grazing livestock spent more time near the piospheres. As such, defecation and urination by these animals could have enhanced nutrient deposition and accumulation leading to soil organic carbon and nitrogen augmentation. Stumpp et al. (2005) reported high dung deposits around the Mongolian piospheres. Smet and Ward (2006) and Shahriary et al. (2012) also reported high soil organic carbon and total nitrogen around the piospheres of South Africa and Iran, respectively. Anthony et al. (2015) also observed high total nitrogen near the piospheres of Karamoja, Uganda.

Soil pH

Soil pH significantly decreased (F = 12.69, P = 0.001) with piospheric distance. No significant difference was however observed in soil pH between piospheres (F = 0.46, P = 0.874), seasons (F = 0.01, P = 1.000), and the interactions between the treatments of distance × season × piosphere (F = 0.01, P = 1.000).

High compaction near the piospheres reduced infiltration which might have hampered nutrient leaching to the lower horizons of the soil profile. According to Beukes and Ellis (2003), sodium and calcium ions accumulate at the soil surface when leaching is hindered, leading to increased soil pH. This could have been the possible reason for the significantly higher ($P \le 0.05$) soil pH observed near the piospheres. Al-Seekh et al. (2009) also observed high soil pH in high intensity grazing areas in the West Bank rangelands of Pakistan. Similarly, Smet and Ward (2006) and Anthony et al. (2015) reported high soil pH near the piospheres of South Africa and Karamoja, Uganda, respectively. Further, Shahriary et al. (2012) witnessed a decreasing trend in soil pH from Iranian piospheres.

Conclusions

The high soil compaction around the piospheres resulted in high soil bulk density and reduced soil porosity. Consequently, soil hydraulic conductivity was hampered, reducing soil moisture content. Bare grounds near the piospheres further exposed the soil to impact of raindrops, decreasing soil aggregate stability and making the soils vulnerable to erosion. This could have been the reason sand content was higher near the piospheres, because the fine clay and silt particles had been carried off by either water or wind. It is recommended that that grazing animals be placed under strict monitoring to reduce the amount of time spent around the piospheres and minimize soil compaction. Alternatively, the number of piospheres can be increased to reduce the number of animals drinking from each. Range reseeding should also be done to rehabilitate the areas that are already degraded.

Acknowledgements

This study was funded by the International Canopy of Conservation (I-CAN) and the African Conservation Centre (ACC) through the African Drylands Institute for Sustainability (ADIS) at the University of Nairobi. We also acknowledge Anyika, F, Muliro BA, and P Kimotho for their help in soil analysis. Special thanks to the management of Mopel Ranch, Kiserian for allowing us to conduct the research within their premises.

Authors' contributions

JS designed the study, collected the data, and participated in the data analysis; JS also drafted the manuscript write up and revised the manuscript. KO was part of the study design, data cleaning and analysis, and manuscript write up and revision. KG was part of the study design, data analysis and presentation, and manuscript editing. MJ was part of the research design and methodology, data analysis, and contributed to the results write up and manuscript editing. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests in this paper and the study as a whole.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 16 November 2016 Accepted: 11 April 2017 Published online: 05 May 2017

References

- Alaoui A, Lipiec J, Gerke HH (2011) A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective. Soil Tillage Res 115:1–15
- Alphayo L (2015) Effects of holistic grazing management on soil physio-chemical properties and herbaceous vegetation production in Naibunga Conservancy, Laikipia County, Kenya. University of Nairobi, Doctoral dissertation
- Al-Seekh SH, Mohammad AG, Amro YA (2009) Effect of grazing on soil properties at southern part of West Bank Rangeland. Hebron Univ Res J 4(1):35–53
- Amiri ME, Fallahi E, Golchin A (2008) Influence of foliar and ground fertilization on yield, fruit quality, and soil, leaf, and fruit mineral nutrients in apple. J Plant Nutr 31(3):515–525
- Anthony E, Bernard B, Henry MM, Paul N (2015) Piosphere Syndrome and Rangeland Degradation in Karamoja Sub-region, Uganda. Resourc Environ 5(3):73–89
- Arnhold S, Otieno D, Onyango J, Koellner T, Huwe B, Tenhunen J (2015) Soil properties along a gradient from hillslopes to the savanna plains in the Lambwe Valley, Kenya. Soil Tillage Res 154:75–83
- Azarnivand H, Farajollahi A, Bandak E, Pouzesh H (2010) Assessment of the effects of overgrazing on the soil physical characteristic and vegetation cover changes in rangelands of Hosainabad in Kurdistan province, Iran. J Rangeland Sci 1(2):95–102
- Bekure, S (1991) Maasai herding: an analysis of the livestock production system of Maasai pastoralists in eastern Kajiado District, Kenya (Vol. 4). ILRI (aka ILCA and ILRAD).
- Bell ALW (2010) Impacts of soil compaction by livestock on crop productivity–a modelling analysis. In: Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia, Symposium 3.1. 2 Farm system and environment impacts. International Union of Soil Sciences (IUSS)., pp 117–120
- Beukes PC, Ellis F (2003) Soil and vegetation changes across a Succulent Karoo grazing gradient. Afr J Range Forage Sci 20(1):11–19

- Brenner JM, Mulvaney CS (1982) Nitrogen total. In: Black CA (ed) Methods in Soil Analysis: Agronomy., pp 595–624
- Brooks ML, Matchett JR (2006) Spatial and temporal patterns of wildfires in the Mojave Desert, 1980–2004. J Arid Environ 67:148–164
- Buresh RJ, Austin ER, Craswell ET (1982) Analytical methods in15N research. Fertil Res 3(1):37–62
- Chaichi MR, Saravi MM, Malekian ARASH (2005) Effects of livestock trampling on soil physical properties and vegetation cover (case study: Lar Rangeland, Iran). Int J Agric Biol 7:904–908
- Cournane FC, McDowell RW, Condron LM (2010) Do aggregation, treading, and dung deposition affect phosphorus and suspended sediment losses in surface runoff? Soil Res 48(8):705–712
- Day PR (1965) Particle fractionation and particle-size analysis. In: Methods of soil analysis. Part 1. Physical and mineralogical properties, including statistics of measurement and sampling, (methodsofsoilana), pp 545–56
- Flint AL, Flint LE (2002) Particle Density. In: Methods of Soil Analysis: Part 4 Physical Methods, (methodsofsoilan4), pp 229–240
- Gomez E, Ferreras L, Toresani S (2006) Soil bacterial functional diversity as influenced by organic amendment application. Bio Res Technol 97(13): 1484–1489
- Han G, Hao X, Zhao M, Wang M, Ellert BH, Willms W, Wang M (2008) Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia. Agric Ecosyst Environ 125(1):21–32
- Ingram LJ, Stahl PD, Schuman GE, Buyer JS, Vance GF, Ganjegunte GK, Derner JD (2008) Grazing impacts on soil carbon and microbial communities in a mixed-grass ecosystem. Soil Sci Soc Am J 72(4):939–948
- Landman M, Schoeman DS, Hall-Martin AJ, Kerley GI (2012) Understanding longterm variations in an elephant piosphere effect to manage impacts. PLoS One 7(9):e45334
- McKenzie, N, Jacquier, D, Isbell, R, Brown, K (2004) Australian soils and landscapes: an illustrated compendium. CSIRO publishing
- McLean EO (1982) Soil pH and lime requirement. Methods of soil analysis. Part 2. Chemical and microbiological properties. Methodsofsoilan 2:199–224
- Middleton, N, Thomas, D. (1997) World atlas of desertification Arnold, Hodder Headline, PLC.
- Mohammed A (2000) Vegetation cover and productivity of the rangeland in the Southern part of West Bank. Bethlehem Univ J 19:75–87.27
- Mugerwa S, Emmanuel Z (2014) Drivers of grassland ecosystems' deterioration in Uganda. Appl Sci Rep 2(3):103–111
- Nelson DW, Sommers L (1982) Total carbon, organic carbon, and organic matter. Methods of soil analysis. Part 2. Chemical and microbiological properties. Methodsofsoilan 2:539–579
- Ogutu JO, Owen-Smith N, Piepho HP, Said MY, Kifugo S, Reid RS, Andanje S (2013) Changing wildlife populations in Nairobi National Park and adjoining Athi-Kaputiei Plains: collapse of the migratory wildebeest. Open Conserv Biol J 7:11–26
- Ombogo MO (2013) Impact of climate variability on pastoralism: forage dynamics and trends in cattle population in Kajiado County, Kenya. University of Nairobi), Doctoral dissertation
- Pei, S, Fu, Wan, C (2008) Changes in soil properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia, China. Agriculture, Ecosystem and Environment (in press)
- Reynolds WD, Elrick DE (2002) Constant head soil core (tank) method. Methods Soil Anal Part 4:804–808
- Schrama M, Heijning P, Bakker JP, van Wijnen HJ, Berg MP, Olff H (2013) Herbivore trampling as an alternative pathway for explaining differences in nitrogen mineralization in moist grasslands. Oecologia 172(1):231–243
- Shahriary E, Palmer MW, Tongway DJ, Azarnivand H, Jafari M, Saravi MM (2012) Plant species composition and soil characteristics around Iranian piospheres. J Arid Environ 82:106–11
- Smet M, Ward D (2006) Soil quality gradients around water-points under different management systems in a semi-arid savanna, South Africa. J Arid Environ 64(2):251–269
- Stankovičová K, Novák J, Bajla J, Chlpík J (2008) Penetration resistance of soil on the year-long using mountain pasture by the cattle. J Cent Eur Agric 9(2): 311–316
- Sternberg T (2012) Piospheres and pastoralists: vegetation and degradation in steppe grasslands. Hum Ecol 40(6):811–820
- Stumpp M, Wesche K, Retzer V, Miehe G (2005) Impact of grazing livestock and distance from water source on soil fertility in southern Mongolia. Mt Res Dev 25(3):244–251

- Sun DS, Wesche K, Chen DD, Zhang SH, Wu GL, Du GZ, Comerford NB (2011) Grazing depresses soil carbon storage through changing plant biomass and composition in a Tibetan alpine meadow. Plant Soil Environ 57(6):271–278
- Todd SW (2006) Gradients in vegetation cover, structure and species richness of Nama-Karoo shrublands in relation to distance from livestock watering points. J Appl Ecol 43(2):293–304
- Wahome CN, Okemo PO, Nyamache AK (2014) Microbial quality and antibiotic resistant bacterial pathogens isolated from groundwater used by residents of Ongata Rongai, Kajiado North County, Kenya. Int J Biol Chem Sci 8(1):134–143
- Wasonga, VO (2009) Linkages between land-use, land degradation and poverty in semi-arid rangelands of Kenya: the case of Baringo district. Doctoral dissertation, University of Nairobi, Department of agriculture.
- Zhang S, Grip H, Lövdahl L (2006) Effect of soil compaction on hydraulic properties of two loess soils in China. Soil Tillage Res 90(1):117–125

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com