respectively egg yields. Thus, the owner will subsequently earn more from the birds, and this will contribute towards poverty alleviation for these villagers.

A-53 EASE OF TRANSMITING P. MULTOCIDA BETWEEN INDIGENOUS CHICKENS AND DUCKS THROUGH CONTACT TRANSMISSION

Mbuwia, P.G., L.W. Njagi, P.N. Nyaga, L.C. Beborada, P.N., G.M. Mugera, U.Minga, and J.E. Olsen. 1 Department of Veterinary Pathology, microbiology and Parasitology, C.A.V.S., P.O. Box 29053, Nairobi, Kenya, 2 Department of Microbiology and Parasitology, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania. 3 Department of Veterinary Microbiology, The Royal Veterinary and Agricultural University, DK-1870 Frederiksberg C., Denmark.

A total of ninety-six indigenous birds were intracheally infected with Pasteurella multocida, paired and sacrificed at specified times. Seven organs from each of the four pairs were swabbed for culture and tissues taken for FISH test to detect the presence of the bacterium in these birds. For culture method, oropharyngeal and cloacal swabs were collected. Cultured and bacteria characterized by biochemical tests. While for FISH test, tissues were processed for histology after fixation in formalin for 24 hours and later preserved in 70% alcohol before in situ hybridization test. All organs had P. multocida signals on FISH test, but large intestine/cloaca and preening gland were negative for the bacterium on culture. The infectivity per bird ranged from 47.75% on FISH test and 7-50% on culture from all the organs. Four (lungs, trachea/oropharyngeal, liver and spleen) of the organs were positive for FISH signals but only one (trachea/oropharyngeal) on culture from 1 hr to 14 days post infection. Both tests were positive for P. multocida immediately after inoculation. FISH signals were found in a decreasing manner in the lung, trachea/oropharyngeal, liver, spleen, caecal tonsils, large intestine/cloaca, and preening gland. On culture, the bacteria were found in a decreasing manner in the trachea/oropharyngeal, lung, spleen, liver and caecal tonsils. Most cultured isolated were made between 1-24 hours while several intermittent ones thereafter, and none at all after the 10th day post infection. These results show that FISH test is more sensitive than the culture method and can be used to detect Pasteurella multocida in many organs.

A-54 COMPARISON BETWEEN FLUORESCENT IN-SITU HYBRIDIZATION (FISH) AND CULTURE METHOD IN THE DETECTION OF PASTEURELLA MULTOCIDA IN ORGANS OF INDIGENOUS BIRDS

Mbuwia, P.G., L.W. Njagi, P.N. Nyaga, L.C. Beborada, G.M. Mugera, U.Minga, and J.E. Olsen. 1 Department of Veterinary Pathology, microbiology and Parasitology, C.A.V.S., Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi, Kenya, 2 Department of Microbiology and Parasitology, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania. 3 Department of Veterinary Microbiology, The Royal Veterinary and Agricultural University, DK-1870 Frederiksberg C., Denmark.

Livestock production is a major source of livelihood among pastoralists in SSA. However, the potential contribution of animals at household level is being limited by several constraining factors.
UNIVERSITY OF NAIROBI

BIENNIAL SCIENTIFIC CONFERENCE OF THE FACULTY
OF VETERINARY MEDICINE

DATE: November 3rd TO 5th 2004

THEME: Improving Animal Health and Production for Food Security

COLLEGE OF AGRICULTURE AND VETERINARY SCIENCES
FACULTY OF VETERINARY MEDICINE

VENUE: DEPARTMENT OF PUBLIC HEALTH, PHARMACOLOGY AND TOXICOLOGY
KABETE CAMPUS