ITIKI:
Bridge between African Indigenous Knowledge and Modern Science on Drought Prediction

By
Euphraith Muthoni Masinde

Thesis presented for award of the Degree of
DOCTOR OF PHILOSOPHY in the Department of Computer Science

Faculty of Science
UNIVERSITY OF CAPE TOWN
August 2012

Supervised by
Dr Antoine Bagula

and

Prof. Nzioka Muthama
Extended Abstract

The now more rampant and severe droughts have become synonymous with the Sub-Saharan Africa where they are a major contributor to the acute food insecurity in the Region. Though this is not different from other regions in the world, the uniqueness of the problem in the Sub-Saharan Africa countries is the ineffectiveness of the drought monitoring and predicting tools in use in these countries. Accurate and reliable drought forecasts, when delivered in a timely fashion and in formats that are comprehensible to the targeted users, are a precursor to successful drought mitigation strategies. There is a link between weather monitoring and droughts; accurate weather monitoring can detect droughts occurrence long before they strike. In Sub-Saharan Africa, resource-challenged National Meteorological Services are tasked with this responsibility. Although these Services use well-calibrated weather stations that meet World Meteorological Organisation’s standards, the high cost of acquiring the stations allows only a sparse deployment.

Despite this challenge, these institutions continue to provide regular climate forecasts especially in form of Seasonal Climate Forecasts. The utilisation of these forecasts by the small-scale farmers whose crops/livestock depend solely on rainfall is still very low; they instead continue to consult their Indigenous Knowledge Forecasts for their cropping decisions. This is partly because the Seasonal Climate Forecasts are too supply-driven, too ‘coarse’ to have meaning at the local level and the dissemination channels are ineffective. Why small-scale farmers? Economies of most countries in the Sub-Saharan Africa are agri-based with over 70% of food being produced by small-scale farmers practicing rain-fed agriculture. The latter in extremely responsive to weather patterns and a good rain season translates to bumper harvest and hunger and despair otherwise.

Though the robust Indigenous Knowledge Forecasts that these farmers have relied on since time immemorial has always worked, there is evidence that the knowledge is under serious threat from events such as climate change and ‘modernisation’. Some of these threats can be countered by blending it with the Seasonal Climate Forecasts. On the other hand, incorporating Indigenous Knowledge Forecasts into the Seasonal Climate Forecasts will improve its relevance (both locally and culturally) and acceptability and hence boost their utilisation among the small-scale farmers.

The advantages of this mutual symbiosis relationship between the two forecasting systems have been recognised and pursued in a few initiatives, but with little success. The main challenge is the inability of these initiatives to scale-up beyond a region/community and two, the lack of micro-level weather data to validate the forecast outcomes. Information and Communication Technologies (ICTs) can
accelerate this integration; this is the focus of this research. The thesis describes a novel drought monitoring and predicting solution that is designed to work within the unique context of small-scale farmers in Sub-Saharan Africa. The research started off by designing a unique integration framework that creates the much-needed bridge *(itiki)* between Indigenous Knowledge Forecasts and Seasonal Climate Forecasts. The Framework was then converted into a Drought Early Warning System prototype made up of three components; (1) Drought Knowledge; (2) Drought Monitoring and Prediction; and (3) Drought Dissemination and Communication. To achieve sustainability, relevance and acceptability, indigenous knowledge was integrated in each of the three components while mobile phones were used as both input and output devices for the system. In order to facilitate collection and conservation of indigenous knowledge on drought monitoring, an elaborate Android-based mobile application was developed while text-to-speech and speech-to-text plug-ins were incorporated to cater for semi-illiterate farmers. Wireless sensor-based weather meters were acquired, calibrated against conventional weather stations and deployed as a compliment to the weather stations. This proved the hypothesis that, when deployed in hundreds, these sensors are capable of extending the weather network coverage to enhance weather forecasting by downscaling the reading of weather parameters to tens of meters.

Weather data is a ‘gold mine’ for many sectors of an economy and to allow public access to drought monitoring system data, a comprehensive web portal and an SMS-based component were also implemented. In order to collect real data for the indigenous drought forecast aspect, a case study of two communities in Kenya (Mbeere and Abanyole) was carried out. On completion of the system prototype, participants from the two communities evaluated it; based on content and format of the integrated forecasts, 90% of respondents gave a score of ‘excellent’.

The complexity of the resulting system was enormous and to ensure that the above diverse parts worked together, artificial intelligence technologies were heavily used in developing the system. Artificial Neural Networks were used to develop forecast models whose accuracies ranged between 75 and 98% for lead-times of one day to four years. Fuzzy logic was used to store and manipulate the holistic indigenous knowledge while intelligent agents were used to integrate all the sub-systems into a single unit. After evaluating it using over forty years of historical weather data from Kenya, Effective Drought Index was adopted for drought monitoring because of its ability to quantify and qualify drought in absolute terms.
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>ANFIS</td>
<td>Adaptive Neural Network-based Fuzzy Inference System</td>
</tr>
<tr>
<td>ANNs</td>
<td>Artificial Neural Networks</td>
</tr>
<tr>
<td>AWRI</td>
<td>Available Water Resources Index</td>
</tr>
<tr>
<td>BDI</td>
<td>Belief, Desire and Intention</td>
</tr>
<tr>
<td>DEWS</td>
<td>Drought Early Warning System</td>
</tr>
<tr>
<td>DFAS</td>
<td>Drought Forecast and Alert System</td>
</tr>
<tr>
<td>DMSNN</td>
<td>Direct Multi-Step Neural Network</td>
</tr>
<tr>
<td>EAC</td>
<td>East African Community</td>
</tr>
<tr>
<td>EDI</td>
<td>Effective Drought Index</td>
</tr>
<tr>
<td>EW</td>
<td>Early warning</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organisation</td>
</tr>
<tr>
<td>FEWS-Net</td>
<td>Famine Early Warning System Network</td>
</tr>
<tr>
<td>FMF</td>
<td>Fuzzy Membership Function</td>
</tr>
<tr>
<td>GIEWS</td>
<td>Global Information and Early Warning System on Food and Agriculture</td>
</tr>
<tr>
<td>GMT</td>
<td>Greenwich Mean Time</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile</td>
</tr>
<tr>
<td>GPRS</td>
<td>General Packet Radio Service</td>
</tr>
<tr>
<td>HEWS</td>
<td>Humanitarian Early Warning Service</td>
</tr>
<tr>
<td>HPI</td>
<td>Hasso-Plattner Institut</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organisation</td>
</tr>
<tr>
<td>ICT4D</td>
<td>Information Communication Technologies for Development</td>
</tr>
<tr>
<td>ICTs</td>
<td>Information Communication Technologies</td>
</tr>
<tr>
<td>IDE</td>
<td>Integrated Development Environment</td>
</tr>
<tr>
<td>IK</td>
<td>Indigenous Knowledge</td>
</tr>
<tr>
<td>IKFs</td>
<td>Indigenous Knowledge Forecasts</td>
</tr>
<tr>
<td>IRMA</td>
<td>Intelligent Resource-bound Machine Architecture</td>
</tr>
<tr>
<td>ITIKI</td>
<td>Information Technology and Indigenous Knowledge with Intelligence</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunication Union</td>
</tr>
<tr>
<td>IVR</td>
<td>Interactive Voice Response</td>
</tr>
<tr>
<td>JADE</td>
<td>Java Agent Development</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>KMD</td>
<td>Kenya Meteorological Department</td>
</tr>
<tr>
<td>MAM</td>
<td>March-April-May</td>
</tr>
<tr>
<td>MAPE</td>
<td>Mean Absolute percentage Error</td>
</tr>
<tr>
<td>ME</td>
<td>Mean Error</td>
</tr>
<tr>
<td>MobiGrid</td>
<td>Mobile Phone Grid</td>
</tr>
<tr>
<td>MobiSoc</td>
<td>Mobile Phone Service Oriented Computing</td>
</tr>
<tr>
<td>MODIS</td>
<td>Moderate Resolution Imaging Spectroradiometer</td>
</tr>
<tr>
<td>NMSs</td>
<td>National Meteorological Services</td>
</tr>
<tr>
<td>OND</td>
<td>October-November-December</td>
</tr>
<tr>
<td>PiCEEs</td>
<td>Pilot, Exploratory and Confirmatory Experiments</td>
</tr>
<tr>
<td>PRS</td>
<td>Procedural Reasoning System</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root Mean Square Error</td>
</tr>
<tr>
<td>RMSNN</td>
<td>Recursive Multi-Step Neural Network</td>
</tr>
<tr>
<td>RPC</td>
<td>Recursive Participatory Experiments</td>
</tr>
<tr>
<td>SCFs</td>
<td>Seasonal Climate Forecasts</td>
</tr>
<tr>
<td>SMS</td>
<td>Short Message Service</td>
</tr>
<tr>
<td>SPATSIM</td>
<td>Spatial and Time Series Information Modelling</td>
</tr>
<tr>
<td>SPI</td>
<td>Standard Precipitation Index</td>
</tr>
<tr>
<td>SSA</td>
<td>Sub-Saharan Africa</td>
</tr>
<tr>
<td>UCT</td>
<td>University of Cape Town</td>
</tr>
<tr>
<td>WFP</td>
<td>World Food Programme</td>
</tr>
<tr>
<td>WMO</td>
<td>World Meteorological Organisation</td>
</tr>
<tr>
<td>WSNs</td>
<td>Wireless Sensor Networks</td>
</tr>
</tbody>
</table>
Table of Contents

DEDICATION .. I
DECLARATION ... II
ACKNOWLEDGMENTS .. III
ABSTRACT .. IV
EXTENDED ABSTRACT ... V
LIST OF ACRONYMS ... VI
TABLE OF CONTENTS .. IX
LIST OF FIGURES ... XIII
LIST OF TABLES ... XV
PUBLICATIONS ... XVI

1 INTRODUCTION AND BACKGROUND INFORMATION .. 1
 1.0 PROBLEM STATEMENT .. 1
 1.1 MOTIVATION AND JUSTIFICATION .. 2
 1.2 HYPOTHESIS .. 3
 1.3 THE SOLUTION .. 4
 1.3.1 Research Questions .. 4
 1.3.2 Research Objectives ... 5
 1.4 RESEARCH ACHIEVEMENTS AND CONTRIBUTION ... 6
 1.5 RESEARCH EVALUATION CRITERIA ... 8
 1.6 THESIS STRUCTURE ... 9

2 LITERATURE REVIEW ... 12
 2.0 INTRODUCTION ... 12
 2.1 DROUGHTS ... 12
 2.1.1 Drought Definitions ... 12
 2.1.2 What Causes Droughts? .. 13
 2.1.3 Impacts, Cost and Complexity of Droughts .. 14
 2.1.4 Meteorological Drought Severity Indices .. 17
 2.1.5 Drought Prediction and ICT - Where is the link? .. 20
 2.2 ARTIFICIAL INTELLIGENCE TECHNIQUES IN PREDICTING DROUGHTS 21
 2.2.1 Overview .. 21
 2.2.2 Artificial Neural Networks .. 23
 2.2.3 Fuzzy Logic .. 25
 2.2.4 Belief-Desire-Intension Agents ... 30
 2.3 INDIGENOUS KNOWLEDGE WEATHER FORECASTS ... 33
 2.3.1 Definitions ... 33
 2.3.2 Precepts of Indigenous Knowledge on drought forecasting ... 34
 2.3.3 Indigenous Knowledge on Droughts .. 35
 2.3.4 Indigenous Drought Forecasts in African Communities .. 36
 2.4 SEASONAL CLIMATE FORECASTS ... 38
 2.4.1 Overview .. 38
 2.4.2 Deriving seasonal forecast relevant for Africa ... 39
 2.5 INDIGENOUS KNOWLEDGE VERSUS MODERN SCIENCE ON DROUGHTS 40
 2.5.1 Complementary Role ... 40
 2.5.2 The Differences and Similarities ... 43
 2.5.3 Integration Framework ... 45
 2.6 EARLY WARNING SYSTEM FOR DROUGHTS ... 49
 2.6.1 Definitions ... 49
 2.6.2 Existing Drought Early Warning Systems .. 49
 2.6.3 People-Centred Approaches to Early Warning Systems.. 50

3 RESEARCH METHODOLOGY AND DESIGN ... 51
3.0 INTRODUCTION ... 51
3.1 RESEARCH DESIGN .. 52
3.1.1 Experimental Design ... 53
3.1.2 Case Study with Experimental Design 57
3.2 DATA COLLECTION METHODS ... 58
3.3 DATA AND ERROR ANALYSIS METHODS 59
3.3.1 Calibrating for Uncertainty of Meteorological Measurements ... 59
3.3.2 Ranking ANNs Models’ Performance 64

4. ITIKI’S ARCHITECTURE .. 65
4.0 INTRODUCTION .. 65
4.1 GENERAL ELEMENTS OF AN EARLY WARNING SYSTEM 65
4.2 FEATURES OF AN INTEGRATED DROUGHT EARLY WARNING SYSTEM 67
4.2.1 Indigenous Knowledge .. 67
4.2.2 Effective Drought Index .. 68
4.2.3 Wireless Sensor Networks ... 68
4.2.4 Mobile Photos ... 69
4.2.5 Artificial Intelligence .. 70
4.3 DEWS FRAMEWORK ARCHITECTURE 70
4.3.1 Element 1: Drought Risk Knowledge 72
4.3.2 Element 2: Monitoring and Prediction 72
4.3.3 Element 3: Forecasts Dissemination 74
4.4 DEWS FRAMEWORK – ROLE OF ICTS 75
4.4.1 Wireless Sensor Networks .. 75
4.4.2 Service-Oriented Computing on Mobile Phone Grid 75
4.4.3 Web Service, RSS and XML .. 78

5. COLLECTING DROUGHT RISK KNOWLEDGE 79
5.0 INTRODUCTION .. 79
5.1 DATA SOURCE 1: INDIGENOUS KNOWLEDGE 80
5.2 MBEERE AND BUNYORE COMMUNITY CASE STUDY 80
5.3 IK DATA SOURCE – DESIGN FACTORS 96
5.3.1 Factors Description .. 96
5.3.2 Conceptual Framework .. 97
5.3.3 Fuzzy Representation of Indigenous Knowledge 99
5.4 DATA SOURCE 2: STRUCTURED WEATHER DATA 103
5.4.1 Logic Design ... 103
5.4.2 Calibrating Sensor Boards versus Weather Instruments 104
5.4.3 Calibration Model .. 106
5.4.4 Calibration Experiment Setup ... 108
5.4.5 Calibration Experiment - Data Analysis 110
5.4.6 Confirmatory Experiments .. 112
5.4.7 Calibrating the Sensors .. 113
5.4.8 Battery Management Tests ... 114
5.4.9 Post Deployment Errors .. 116

6. DROUGHT MONITORING USING EFFECTIVE DROUGHT INDEX 117
6.0 INTRODUCTION .. 117
6.1 COMPUTING EFFECTIVE DROUGHT INDEX 118
6.2 APPLICATION OF EDI - KENYA’S CASE STUDY 121
6.2.1 Weather and Droughts Forecasting in Kenya 121
6.2.2 Existing Gaps ... 122
6.2.3 Data and Methodology Used .. 123
6.3 GENERAL FINDINGS .. 127
6.3.1 Annual Precipitation, EDI and AWRI Variations 127
6.3.2 Identifying Extreme Events .. 129
6.4 MAPPING ONSET, SEVERITY, DURATION AND CESSATION 130
6.4.1 The 1983-1985 Drought .. 130
6.4.2 The 1997-1998 Floods .. 135
6.5 DERIVED OCCURRENCE PROBABILITIES FOR EXTREME EVENTS 138
Table of Contents

7. DROUGHT FORECASTING USING ARTIFICIAL NEURAL NETWORKS152
 7.0 INTRODUCTION ... 152
 7.1 PILOT PHASE .. 154
 7.1.1 Overview... 154
 7.1.2 Selected Networks .. 159
 7.1.3 Omitted Networks ... 160
 7.2 EXPLORATORY PHASE I ... 160
 7.3 EXPLORATORY PHASE II .. 162
 7.3.1 D-Days-Lead-Time Forecast ... 162
 7.3.2 D-Days-Lead-Time Forecast with Precipitation 166
 7.3.3 Next-Month-Forecast ... 169
 7.3.4 M-Months-Lead-Time Forecast 171
 7.3.5 Next-Year-Forecast .. 175
 7.3.6 Y-Years-Lead-Time Forecast ... 179
 7.4 CONFIRMATORY PHASE ... 180
 7.4.1 Overview... 180
 7.4.2 D-Days-Lead-Time Forecasting ... 181
 7.4.3 D-Days-Lead-Time Forecasting with Precipitation 181
 7.4.4 Y-Years-Lead-Time Forecast ... 182

8. DROUGHT COMMUNICATION AND DISSEMINATION183
 8.0 INTRODUCTION ... 183
 8.1 SYSTEM OVERVIEW AND USE CASE 183
 8.2 SYSTEM LAYER 1 – DROUGHT KNOWLEDGE CAPTURE187
 8.2.1 System Layer 1 – the Logic ... 187
 8.2.2 Mobile Phone Application ... 187
 8.2.3 Sensor-Based Weather Station .. 192
 8.2.4 Conventional Weather Station ... 197
 8.2.5 SMS Gateway .. 198
 8.2.6 Published Weather Reports ... 199
 8.3 SYSTEM LAYER 2 – DROUGHT MONITORING AND PREDICTION199
 8.3.1 System Layer 2 - Analysis .. 199
 8.3.2 EDI Web-Based Decision Support System 200
 8.4 SYSTEM LAYER 3 – DROUGHT FORECASTS DISSEMINATION203
 8.4.1 System Layer 1 - Analysis .. 203
 8.4.2 System Layer 3 Design .. 206
 8.4.3 System Layer 3 - Implementation and Testing208

9. EVALUATION, DISCUSSION AND CONCLUSION214
 9.0 INTRODUCTION ... 214
 9.1 EVALUATION ... 214
 9.1.1 Objective 1: WSNs for Drought Monitoring214
 9.1.2 Objective 2: Mobile Phones for Drought Monitoring215
 9.1.3 Objective 3: EDI for Drought Monitoring215
 9.1.4 Objective 4: IK and Drought Monitoring216
 9.1.5 Objective 5: Drought Prediction ...217
 9.1.6 Integrated DEWS Evaluation ..221
 9.2 DISCUSSION, CONCLUSION AND FURTHER WORK222
 9.2.1 Discussion and Conclusion ..222
 9.2.2 Further Work ..223
10. REFERENCES ... 227
11. APPENDICES .. 244
 APPENDIX 11-1 – SAMPLE SEASONAL CLIMATE FORECAST 244
 APPENDIX 11-3: 14TH DEKAD, 10 TO 20 MAY 2009 ... 252
 APPENDIX 11-3 – ESTIMATED COST OF ITIKI IMPLEMENTATION 258
 Overview .. 258
 Equipment Cost ... 258
 Recurring Cost ... 260