Found 4 results

Sort by: Author [ Title  (Asc)] Type Year
Filters: First Letter Of Title is M  [Clear All Filters]
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
J PROFMULAAFRANCIS. "Maltohexaose production by a recombinant Bacillus halodurans α-amylase:.". In: enhanced yields by in situ product removal (manuscript). Springerlink; 2004. Abstract
Proteins isolated from the midgut of Glossina pallidipes were used to immunize rabbits and their efficacy as vaccine candidate(s) against the fly, and their potential to block transmission of Trypanosoma brucei rhodesiense assessed. Two fractions, detergent (DET) and aqueous (AQ) fractions were separated using a non-ionic detergent (Triton X-114) and a series of bioassay experiments carried out using serum obtained from rabbits immunized with either of the two fractions. The mortality rates of tsetse flies fed on serum from rabbits immunized with DET and AQ was 56 and 35%, respectively, as compared to 20% mortality in controls. The DET antigen(s) caused considerably higher mortality (chi(2)=1.194, P<0.05) than that on controls. These findings suggest that midgut proteins contain antigens that are lethal to tsetse flies, and are potential candidates for the development of anti-tsetse vaccine. When flies fed on serum derived from DET immunized rabbits were fed on T. b. rhodesiense infected blood, only 20% of them picked the infection. Very few flies (20%) fed on serum derived from DET immunized rabbits had infection of T. b. rhodesiense. In the control flies 45% of them had infection in the midgut with a higher and actively motile parasite load. Assessment of fecundity indicated significantly higher (chi(2)=2.117, P<0.05) larviposition for the control flies when compared to the AQ group of flies (chi(2)=1.054, P<0.05). Significant differences in abortions and pupal weights were also observed. These results suggest that midgut proteins contain antigens with potential for use in development of vaccine to block transmission of trypanosomes through tsetse.
Baliraine FN, Bonizzoni M;, Lux, S. A; Mulaa FJ, Osir EO, Quilici, S; Gomulski LM, Gasperi G, Malacrida AR. "Medfly microsatellite markers for species diagnosis and population genetic analysis in three other fruit fly (Diptera: Tephritidae) species."; 2002.
J PROFMULAAFRANCIS. "Medfly microsatellite markers for species diagnosis and population genetic analysis in three tephritid fruit fly species.". In: Proceedings of the 6th International symposium on fruit flies of economic importance, Stellenbosch, South Africa, 6-10 May 2002. Springerlink; 2002. Abstract
The possibility to cross-species amplify microsatellites in fruit flies of the genus Ceratitis was tested with the polymerase chain reaction (PCR) by analysing 23 Ceratitis capitata (Wiedemann) microsatellite markers on the genomic DNA of three other economically important, congeneric species: C. rosa (Karsch), C. fasciventris (Bezzi) and C. cosyra (Walker). Twenty-two primer pairs produced amplification products in at least one of the three species tested. The majority of the products were similar, if not identical in size to those expected in C. capitata. The structures of the repeat motifs and their flanking sequences were examined for a total of 79 alleles from the three species. Sequence analysis revealed the same repeat type as the homologous C. capitata microsatellites in the majority of the loci, suggesting their utility for population analysis across the species range. A total of seven loci were differentially present/absent in C. capitata, C. rosa, C. fasciventris and C. cosyra, suggesting that it may be possible to differentiate these four species using a simple sequence repeat-based PCR assay. It is proposed that medfly-based microsatellite markers could be utilized in the identification and tracing of the geographical origins of colonist pest populations of the four tested species and in the assessment of their risk and invasive potentials; thereby assisting regulatory authorities in implementing quarantine restrictions and other pest control measures.
J PROFMULAAFRANCIS. "Molecular characterization of a tsetse fly midgut proteolytic lectin that mediates differentiation of African trypanosomes.". In: Insect Biochemistry and Molecular Biology. 36 (4). Springerlink; 2006.

UoN Websites Search