Publications


2013

Agullo, JO, Hassan MA, Omuto CT, Gumbe LO, Obiero JPO.  2013.  Development of Pedotransfer functions for saturated hydraulic conductivity. Website

2012

Rading, G O; Gumbe, ML; DO.  2012.  Service Life Of HDPE Plastic Dam Lining.

2010

2009

2008

2006

NJOROGE, DRGITAUAYUB,.O PROFGUMBELAWRENCE.  2006.  Gitau, A. N., Gumbe, L. O., Biamah E. K. (2006). Influence of soil water on stress-strain behaviour of a compacting soil in semi-arid Kenya. Soil and Tillage Res. 89 (2006): 144-154 ; Elsevier B.V. The Netherlands.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.

2005

.O, PROFGUMBELAWRENCE.  2005.  Gitau, A. N and L. O. Gumbe. Mechanical Behaviour of Hard Setting Soils of Semi-arid Kenya. In Proceedings of the 3'd, World Congress on Conservation Agriculture, Nairobi Kenya. Linking Production, Livelihoods and Conservation. 3rd-7th Oct. 2005. CD-ROM. . Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.

2004

  2004.  Co - generation in the sugar industry. Department of Food Science, Technology and Nutrition.
.O, PROFGUMBELAWRENCE.  2004.  Gitau, A. N and L. O. Gumbe. Alleviating Hard Pan Formation in the Semi-arid Kenya Soils for Conservation Farming. In: Proceedings of a Regional Workshop on Conservation Agriculture and Rainwater Harvesting.1st Nov., 2004 Ethiopia, Addis Ababa. CD-ROM. Pp. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.
.O, PROFGUMBELAWRENCE.  2004.  Gitau, A. N and L. O. Gumbe. Triaxial Testing of Agricultural Soil. In: Proceedings of the 2004 CIGR Internaional Conference-Beijing, P.R. China. 11th Oct. 2004. CD-ROM. Paper No. 10-1 14A.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.
.O, PROFGUMBELAWRENCE.  2004.  Gitau, A. N and L. O. Gumbe. Alleviating Soil Hardpan Formation for Conservation Farming - Case of Semi-arid Kenya. Euro- Asia Journal of Applied Sciences. Vol. 2 No. 3 (ISSN; 14SO-202X).. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.

2003

.O, PROFGUMBELAWRENCE.  2003.  An Introduction to the Mechanical Properties of Building Materials. Gumbe, L.O. Submitted to the University of Nairobi Press.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.
.O, PROFGUMBELAWRENCE.  2003.  Gumbe, L.O. 2003. Engineering and the Future. American Society of Civil Engineers. Virtual World Congress for Civil Engineering, www.ceworld.org. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.
.O, PROFGUMBELAWRENCE.  2003.  Mutai, E. B. K and L. O. Gumbe. Environmental Modelling of Poultry Structures. JEAE(3):24-31.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.

2002

.O, PROFGUMBELAWRENCE.  2002.  A Simplified Temperature Prediction Model for Potatoes Stored Under Natural Convection. Journal of Engineers in Agriculture and the Environment. (2)1:70-73.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.
.O, PROFGUMBELAWRENCE.  2002.  Mechanization of Small farms: A Partial Solution to Poverty and Food Security in Kenya. Journal of Engineering in Agriculture and the Environment (2)1:34-43.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.

2001

.O, PROFGUMBELAWRENCE.  2001.  Creep and Stress Relaxation Behaviour of Naturally Dried Blue-Gum Timber. Agricultural Engineering in South Africa. 32(1)135 - 142.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.
.O, PROFGUMBELAWRENCE.  2001.  Simulation and Control of Poultry Production Systems in Kenya. Proceedings the International Conference on Agricultural Science and Technology (ICAST 2001). 7-9 November 2001, Beijing, P. R. China. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.
.O, PROFGUMBELAWRENCE.  2001.  A Computer Program for Predicting the Storage Environment of Crops. Proceedings of Kenya Society of Agricultural Engineering Annual Conference of 2001.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.

2000

.O, PROFGUMBELAWRENCE.  2000.  Water Resources and Infrastructure Development in Kenya Proceedings of the Symposium of Water Resources and Sanitation Management in Kenya. Tom Mboya Labour College, Kisumu 11-12 May.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.
.O, PROFGUMBELAWRENCE.  2000.  Prediction of Bulk Potato Temperature During Free Natural Ventilation Storage. Agricultural Engineering in South Africa. 32(1)93 - 104.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.

1999

.O, PROFGUMBELAWRENCE.  1999.  Interfacial Bond Strength for Sisal Fibre Composite. Discovery and Innovation, 10(1/2): 60-64.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.
.O, PROFGUMBELAWRENCE.  1999.  Proposed New Curriculum in Engineering for Agriculture and the Environment at the University of Nairobi. Proceedings of the International Conference on Agricultural Engineering Curriculum and Employment Profile, Lusaka, Zambia, 28 - 30 June.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.
.O, PROFGUMBELAWRENCE.  1999.  Viscoelastic Properties of Bluegum Timber. Proceedings of the Annual International Conference of the Kenya Society of Agricultural Engineers. 7-8 October, Intercontinental Hotel, Nairobi.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.
.O, PROFGUMBELAWRENCE.  1999.  Strength Properties of the East African Bamboo.Proceedings of the Annual International Conference of the Kenya Society of Agricultural Engineers. 7-8 October, Intercontinental Hotel, Nairobi.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.
.O, PROFGUMBELAWRENCE.  1999.  Calorific Content of Water Hyacinth. Proceedings of the Annual International Conference of the Kenya Society of Agricultural Engineers. 7-8 October, Intercontinental Hotel, Nairobi.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.
.O, PROFGUMBELAWRENCE.  1999.  Simulation of the Environment in a Poultry House. Journal of Engineering in Agriculture and the Environment. l(l):37-47.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.
.O, PROFGUMBELAWRENCE.  1999.  Blue-gum Timber as a Structural Material. Proceedings of the Forestry Engineering for Tomorrow Conference. Timber. Edinburgh, Scotland. 28- 30 June.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.

1998

.O, PROFGUMBELAWRENCE.  1998.  Controlling the Water Hyacinth in Lake Victoria. Proceedings of the Annual International Conference of the Kenya Society of Agricultural Engineers. 7-9 October, Nairobi Safari Club, Nairobi. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.
.O, PROFGUMBELAWRENCE.  1998.  Prediction of Temperatures in Naturally Ventilated Potato Storage. Proceedings of the Annual International Conference of the Kenya Society of Agricultural Engineers. 7-9 October, Nairobi Safari Club, Nairobi.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.

1997

.O, PROFGUMBELAWRENCE.  1997.  Food Security in Africa: Options for Grain Storage. Paper Presented at the ARSSN Workshop. KCB Training College. Karen, Nairobi. Feb 1997.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.
.O, PROFGUMBELAWRENCE.  1997.  Determination of Mechanical Properties of Fresh Avocado Fruits. Proceedings of the Annual International Conference of the Kenya Society of Agricultural Engineers. 6- 8 August, Milimani Hotel, Nairobi.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.
.O, PROFGUMBELAWRENCE.  1997.  Mechanics of Cereal Grains. Proceedings of the Seventh International Congress on Engineering and Food. 13 -17 April Brighton, England.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.
.O, PROFGUMBELAWRENCE.  1997.  Mechanical Properties of Blue-gum Timber. Landwards, 25(4): 24-26.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.
.O, PROFGUMBELAWRENCE.  1997.  Some Mechanical Properties of Sisal Fibre Concrete, Discovery and Innovation. 9(3/4): 189-196.. Gabbay R. &Siddique A., ed., Good Governance Issues and Sustainable Development: The Indian Ocean Region (New Delhi: Vedams Books). : ISCTRC Abstract
Differentiation of bloodstream-form trypanosomes into procyclic (midgut) forms is an important first step in the establishment of an infection within the tsetse fly. This complex process is mediated by a wide variety of factors, including those associated with the vector itself, the trypanosomes and the bloodmeal. As part of an on-going project in our laboratory, we recently isolated and characterized a bloodmeal-induced molecule with both lectin and trypsin activities from midguts of the tsetse fly, Glossina longipennis [Osir, E.O., Abubakar, L., Imbuga, M.O., 1995. Purification and characterization of a midgut lectin-trypsin complex from the tsetse fly, Glossina longipennis. Parasitol. Res. 81, 276-281]. The protein (lectin-trypsin complex) was found to be capable of stimulating differentiation of bloodstream trypanosomes in vitro. Using polyclonal antibodies to the complex, we screened a G. fuscipes fuscipes cDNA midgut expression library and identified a putative proteolytic lectin gene. The cDNA encodes a putative mature polypeptide with 274 amino acids (designated Glossina proteolytic lectin, Gpl). The deduced amino acid sequence includes a hydrophobic signal peptide and a highly conserved N-terminal sequence motif. The typical features of serine protease trypsin family of proteins found in the sequence include the His/Asp/Ser active site triad with the conserved residues surrounding it, three pairs of cysteine residues for disulfide bridges and an aspartate residue at the specificity pocket. Expression of the gene in a bacterial expression system yielded a protein (M(r) approximately 32,500). The recombinant protein (Gpl) bound d(+) glucosamine and agglutinated bloodstream-form trypanosomes and rabbit red blood cells. In addition, the protein was found to be capable of inducing transformation of bloodstream-form trypanosomes into procyclic forms in vitro. Antibodies raised against the recombinant protein showed cross-reactivity with the alpha subunit of the lectin-trypsin complex. These results support our earlier hypothesis that this molecule is involved in the establishment of trypanosome infections in tsetse flies.

UoN Websites Search