Journal of Advanced Studies in Topology. 9(2):113-118.
In this paper, we introduce separation axioms on the function space p− Cω(Y, Z) and study how they relateto separation axioms defined on the spaces (Z, δi) for i = 1, 2, (Z, δ1, δ2), 1 − Cς(Y, Z) and 2 − Cζ(Y, Z). Itis shown that the space p − Cω(Y, Z) is pT◦, pT1, pT2 and pregular, if the spaces (Z, δ1) and (Z, δ2) are bothT0, T1, T2 and regular respectively. The space p − Cω(Y, Z) is also shown to be pT0, pT1, pT2 and pregular,if the space (Z, δ1, δ2) is p − T0, p − T1, p − T2 and p-regular respectively. Finally, the space p − Cω(Y, Z) isshown to be pT0, pT1, pT2 and pregular, if and only if the spaces 1 − Cς(Y, Z) and 2 − Cζ(Y, Z) are both T0,T1, T2, and only if the spaces 1 − Cς(Y, Z) and 2 − Cζ(Y, Z) are both regular respectively.