Costs of surveys and mass drug administration (MDA) for active trachoma in high and low endemic districts in Kenya

Karimurio J, Rono H, Le Mesurier R, Mwanthi M, Keeffe J

Competing interest: None

- A trachoma prevalence survey is mandatory prior to MDA.
- The starting threshold for MDA is >10% prevalence of active trachoma (TF) in children 1-9 years old and stopping <5%.
- Prevalence 10%-30% treat annually x 3 years then conduct impact assessment trachoma prevalence survey to justify continuation.
- If prevalence >30% treat annually x 5 years, then assess.
- Recommended intervention unit for trachoma = administrative district of approximately 100,000 people each (trachoma district).

- Kenya modified survey methods because of large variation in the population sizes of administrative districts: 100,000 to 1,000,000 people. Trachoma is found in arid areas/nomadic communities.
- In the large districts (>200,000 people) clusters for a survey by administrative district are widely spaced.
- In the initial survey some endemic communities were missed and some non-endemic ones included in MDA.
- The aim was to compare the costs of surveys and MDA in low and high trachoma- endemic districts by the standard and a new survey methods.

Methods

- New method: divide the large district into geographical areas with 100,000-200,000 people each and similar risk of trachoma.
- Survey each of the areas (segments) separately.
- Baseline survey to justify MDA in Turkana district: 533,837 people, 77,000 KM², borders Uganda, Southern Sudan and Ethiopia.
- Impact assessment survey to justify continuation of MDA in Narok district: 576,388 people, 17,128 KM², borders Tanzania.
- The incremental costs of trachoma surveys and MDA in Kenya were extracted from project financial reports.

Results

Districts	Survey segments	Prevalence of	MDA requirement		
		TF _	Standard survey	New survey	
			method	method	
TURKANA	Western Turkana	67.6	N/A*	5 years	
	Northern Turkana	46.4	N/A	5 years	
	Southern Turkana	31.2	N/A	5 years	
	Central Turkana	20.5	N/A	3 years	
	Kakuma refugee camp	14.0	N/A	3 years	
	Entire district	38.0	5 years	N/A	
NAROK	South Western	26.7	N/A	3 years	
	South Eastern	21.6	N/A	3 years	
	Central	4.3	N/A	Not needed	
	North Eastern	2.1	N/A	Not needed	
	North Western	0.4	N/A	Not needed	
	Entire district	11.0	3 years	N/A	

^{*}N/A = not applicable

Costs

- A survey by standard method = US\$27,160 (20 clusters) and a survey by new method = US\$32,592 (100 clusters).
- Distribution cost for a single treatment in Narok was US\$0.26.
- Assume 100,000 people per segment @ US\$0.26 x 3 segments (excluded in Narok) x 3 years project cycle = US\$78,000.
- A single dose of donated zithromax = U\$20 in Kenya.
- Assume 100,000 people x 3 excluded segments @ US\$20 x 3 years = US\$18,000,000.

Conclusions

NAROK (District with low prevalence and clustered disease)

 Survey by segments reduces costs by exclusion of non-endemic segments from MDA.

TURKANA (highly trachoma-endemic district)

- In the short term (3 years) the new survey method had no benefit over the standard survey (same decision for MDA).
- In the long term (>3 years) the segments with prevalence <30% may be excluded from MDA after an impact assessment.

Information

Trachoma maps are available at: www.trachomaatlas.org

What is the appropriate age of participants for a survey to estimate the prevalence of trachomatous trichiasis

Karimurio J, Rono H, Le Mesurier R, Mwanthi M, Keeffe J

Competing interest: None

- TT prevalence increases with advancing age.
- The age limit of people >15 years is recommended for TT surveys and sample sizes are large because TT prevalence in people >15 years is usually low. Researchers often trade off small sample sizes for reduced precision in prevalence estimation.
- The purpose of a TT survey is to determine the backlog of TT for planning surgical services, not to case find. TT coverage is low; why spend a lot of recourses trying to establish the total backlog?
- TT is found in people >40 years old in places where active trachoma has been eliminated. Example: Sichuan province, China

- RAABs (age limit ≥15 years) are increasingly being employed for assessing need and measuring the impact of interventions for control of blindness.
- If TT surveys are conducted in the same districts after RAABs it would result in "wasted surveys".
- The aim of this study was to determine the appropriate age of participants for subsequent TT surveys.
- There is need to ensure that TT (adults) and TF (children) surveys are completed within the same period of time.

Methods

- Data for previously-conducted surveys where the age limit of <u>></u>15 years was used were re-analysed.
- The surveys were conducted in six administrative districts in Kenya in 2004 and 2007 and the sample size was achieved in all the surveys.
- A total of 7,944 subjects aged ≥15 years old were examined and 316 (4.0%) had TT.

Results

Age limit		TT cases and (percentages) diagnosed in the six surveys							
(years)	Samburu	West Pokot	Baringo	Kajiado	Meru North	Laikipia	TOTAL		
<u>≥</u> 50	63(76.8)	62(78.5)	60(72.3)	24(52.2)	9(81.8)	13(86.7)	231(73.1)		
<u>≥</u> 40	73(89.0)	72(91.1)	74(89.2)	32(69.6)	10(90.9)	14(93.3)	275(87.0)		
<u>≥</u> 30	80(97.6)	74(93.7)	80(96.4)	37(84.4)	10(90.9)	15(100)	296(93.7)		
<u>≥</u> 20	82(100)	79(100)	82(98.8)	45(97.8)	11(100)	15(100)	314(99.4)		
<u>≥</u> 15	82(100)	79(100)	83(100)	46(100)	11(100)	15(100)	316(100)		
TOTAL	82(100)	79(100)	83(100)	46(100)	11(100)	15(100)	316(100)		

% of TT cases missed

Results continued

- The age ≥40 years was selected for subsequent TT prevalence surveys.
- Prevalence of TT in people >40 years was 10% and thus a smaller sample size was needed than for age >15 years.
- Backlog of TT in Turkana district was 5,932 people ≥40 years old.
 The district was conducting about 100 TT surgeries per year.
- Narok district the backlog was 2,084 people <u>></u>40 years old. The district was conducting about 200 TT surgeries per year.

Conclusions

- The age of \geq 40 years is the most appropriate age for TT surveys.
- A third of the backlog would have been missed if age limit of <u>></u>50 years was adopted.
- Consider age limit <u>></u>40 years when conducting RAABs in trachoma endemic districts.
- See WOC electronic poster PO-EPI-17 for prevalence and backlog of TT correction factors

Limitations

- The findings could not be generalized because all the surveys were conducted in one country.
- The population age structure and the natural history of TT may vary in different communities.
- Further studies are required to indentify the most appropriate age range of individuals to be included in a TT survey.

Surveys funded by

- Government of Kenya
- European Union
- Sightsavers
- Operation Eyesight Universal
- Spanish Volunteer Eye Doctors
- African Medical and Research Foundation