Full Length Research Paper

Ampicillin resistance and extended spectrum β-lactamases in Enterobacteriaceae isolated from raw and spontaneously fermented camel milk

P. M. K. Njage1*, S. Dolci1, C. Jans1, J. Wangoh2, C. Lacroix1 and L. Meile1

1Laboratory of Food Biotechnology, Institute of Food Science and Nutrition, Swiss Federal Institute of Technology (ETH), CH-8092, Zürich, Switzerland.
2Department of Food Technology and Nutrition, College of Agriculture and Veterinary Sciences, University of Nairobi, P.O. Box 29053-00625, Nairobi, Kenya.

Accepted 14 December, 2011

The prevalence of ampicillin resistance and extended-spectrum β-lactamases (ESBL) in the dominant Enterobacteriaceae from raw and spontaneously fermented camel milk (susuac) in Kenya and Somalia was characterized both phenotypically and genotypically. Globally important SHV and CTX-M-type extended-spectrum β-lactamases (ESBLs) were tested. The Enterobacteriaceae belonged to 15 species from 10 genera. Dominant isolates were Escherichia coli (50), Klebsiella pneumonia subsp. pneumoniae (35) and Enterobacter sakazakii (20). Salmonella arizonae, Serratia odorifera and E. coli occurred at viable counts greater than 8 log cfu/ml. ESBL was studied for 96 E. coli, K. pneumonia subsp. pneumoniae and E. sakazakii. Total of 61 (63%) isolates consisting of 46 (48%) of E. coli, 45 (46%) K. pneumonia subsp. Pneumonia and 16 (7%) E. sakazakii were resistant to ampicillin. blaSHV, blaCTX-M-3-like and blaCTX-M-14-like genes were detected in 37 (60%), 25 (40%) and 11 (18%) of the Enterobacteriaceae isolates respectively. K. pneumonia subsp. pneumoniae harbored majority of these bla genes (74%) with 1 strain possessing all 3 genes and 13 harbouring both blaSHV and blaCTX-M-3-like genes. The diversity of Enterobacteriaceae in camel milk calls for improved handling of camel milk. The ESBL genes in the isolates from the remote semi-arid regions emphasises the global antimicrobial resistance problem among Enterobacteriaceae.

Key words: Extended spectrum β-lactamase, Enterobacteriaceae, Enterobacter sakazakii, Escherichia coli, Klebsiella pneumonia subsp. pneumonia, camel milk.

INTRODUCTION

In Gram-negative pathogens, β-lactamase production is the most important factor complicating the treatment of nosocomial infections. β lactamases are bacterial enzymes that inactivate β-lactam antibiotics (ABs) by hydrolysis, resulting in ineffective compounds even for drugs of choice in clinical AB therapy (Shah et al., 2004; Moubareck et al., 2007). Extended-spectrum or third-generation cephalosporins have been designed towards overcoming this problem. However, some Enterobacteriaceae are able to produce mutant forms of the “older” β-lactamases referred to as extended-spectrum β–lactamases (ESBLs) which are capable of hydrolyzing the new-generation cephalosporins and aztreonam (Wiegand et al., 2007). The transferability of ESBLs encoding genes between various species of Enterobacteriaceae has contributed to a critical AB resistance situation in clinical treatments regarding global infection control issues (Shah et al., 2004).

In Enterobacteriaceae, a significant portion of antimicrobial resistance genes present on plasmids and transposons can also occur in integrons which play a

*Corresponding author. E-mail: kamau.patrick@gmail.com. Tel: +254-720-460727. Fax: +41 44 632 14 03.
particularly important role in the spread of multidrug resistance (Wang et al., 2008). Resistance to sulfamethoxazole, cotrimoxazole, gentamicin, tobramycin, ampicillin, pipercillin, and cefuroxime has been shown to predict the presence of such integrons (Leverstein-van Hall et al., 2003). Globally, TEM-type, SHV-type ESBLs and CTX-M-type ESBLs are the most prevalent ESBLs in Enterobacteriaceae (Dallenne et al., 2010).

Klebsiella pneumoniae, Escherichia coli and Enterobacter sakazakii remains the major ESBL-producing organisms isolated worldwide (Malik et al., 2005; Shah et al., 2004). ESBL-producing Klebsiella spp. and E. coli are now listed among the six drug-resistant microbes to which new therapies are urgently needed (Shah et al., 2004). Approximately 20% of K. pneumoniae infections and 31% of Enterobacter spp. infections in intensive care units in the United States are now caused by strains not susceptible to third-generation cephalosporins (Paterson, 2006).

Despite the fact that ESBL-producing K. pneumoniae, E. sakazakii and E. coli are now common in healthcare settings, ESBL-producing Enterobacteriaceae have now emerged in the community as well. Spreading of AB resistant bacteria among different environments, even in the absence of selective AB pressure, contributes to the importance of studying AB resistance dissemination among Enterobacteriaceae (Malik et al., 2005).

As the use of antibiotic became common in human medicine and animal food production, selective pressure has led to the maintenance of resistance genes in many groups of bacteria, and bacterial evolution has included mechanisms to retain, accumulate, and disperse resistance genes among bacterial populations (Mathew et al., 2007). Food, especially raw animal products like meat and milk are an important factor contributing to the spread of pathogens and AB resistant bacteria (Teuber et al., 1999). Camel milk, a non-industrial product consumed either fermented or fresh, has played an important role in the nutrition of the population in arid and remote zones of East African countries. The spontaneously fermented camel milk is known as suusac. However, reports on ESBL producing Enterobacteriaceae originating from foods are scarce and not available from camel milk. The aim of this study was therefore to determine the prevalence of ESBL in Enterobacteriaceae isolated from fresh and fermented camel milk. Additionally, ampicillin resistance was tested as a predictor of the presence of integrons mediating the spread of multi-drug resistance (Wang et al., 2008).

MATERIALS AND METHODS

Camel milk and milk product samples

A total of 105 samples were collected and analysed. Raw camel milk was sampled along distributing chains in Nanyuki and Isiolo, Kenya, at herd level as individual camel milk and pooled milk, first collection point and from the final market in Nairobi. Fully or partially fermented suusac was collected from Isiolo, Nanyuki, Mandera and Garissa in Kenya and Burco and Garowe in Somalia. Samples were frozen in dry ice to keep them below 4°C and transported to the laboratory within 8 h after collection.

Isolation and enumeration of Enterobacteriaceae

Appropriate dilutions of samples were spread in duplicate on Violet Red Bile Dextrose (VRBD) agar (WVR International AG, Dietikon, Switzerland) and incubated for 24 h at 37°C. Viable counts were enumerated and three colonies per morpho-type were selected and purified by repetitive streaking on fresh agar plates. A total of 160 presumptive Enterobacteriaceae were isolated and transported frozen to ETH Zurich. Initial characterization was done by catalase test (3% H₂O₂, WVR International), Gram-staining reactions (3% KOH, Sigma-Aldrich) and verification of purity was carried out by microscopy examination. Isolates were then preserved in Brain Heart Infusion (BHI) broth (Biolife, Italiana S.r.l) containing 30% glycerol (Sigma-Aldrich Chemie GmbH) at -80°C for use in subsequent experimentation.

Enterobacteriaceae reference strains

Isolates were analysed and data profiles compared with reference strains recommended by Standard Unit, Evaluations and Standards Laboratory (2008). ESBL-producing strains Klebsiella pneumoniae subsp. Pneumonia ATCC 700603 and Escherichia coli GSBL 713901 and ESBL-negative strain Escherichia coli ATCC 25922 (DSM 1103) were used. Table 1 shows their susceptibility patterns to various ABs used in this study.

Identification of isolates

Initial identification of isolates from VRBD-medium was performed
after inoculation in API 20E test-kits (bioMérieux, Geneva, Switzerland) followed by comparison of the generated numerical profile with the API 20E Analytical Profile Index.

Phenotypic antibiotic resistance tests

Total of 96 *Enterobacteriaceae* composed of 16 *E. sakazakii*, 46 *E. coli* and 34 *K. pneumonia* subsp. *pneumoniae* isolates were further tested for AB susceptibility by disc diffusion technique, ampicillin susceptibility test, extended-spectrum cephalosporins susceptibility test and double disc diffusion test.

Disc diffusion technique

A single colony of the test organism was picked up with a disposable loop and emulsified in 5 ml of saline solution (0.85% NaCl) to match the turbidity of 0.5 McFarland's Standard (bioMérieux, Geneva, Switzerland). This suspension was then spread on the surface of duplicate Mueller-Hinton (MH) agar medium using a cotton swab and the appropriate test disc placed on the agar surface.

Ampicillin and extended-spectrum cephalosporins susceptibility test

Screening for ESBL production was done as proposed by Thomson et al. (1996). This is a preliminary screening so that all *Enterobacteriaceae* presenting a decreased inhibition zone in disc diffusion test of ≤ 30 mm for at least one extended-spectrum cephalosporin (ceftazidime, cefotaxime, or ceftriaxone) or aztreonam can be selected for further ESBL production testing (Pitout et al., 1997).

As a pre-requisite, ampicillin susceptibility was tested by placing a 10 µg ampicillin disc (bioMérieux, Geneva, Switzerland) on MH agar plate for each of the tested *Enterobacteriaceae*. Discs with 30 µg ceftriaxone (OXOID), 30 µg cefotaxime (BioMérieux) and 30 µg ceftazidime (BioMérieux) were placed on MH agar plates, inoculated as described in the disc diffusion technique and incubated at 37°C for 20 h. The inhibition zone around the disc was then measured and compared to interpretative diameters according to Clinical and Laboratory Standards Institute (2008).

Double disc diffusion test

The isolates positive in the extended-spectrum cephalosporin (Ampicillin and extended-spectrum cephalosporins susceptibility test) test were subjected to further testing using double disc diffusion test. This ESBL detection test shows through the hydrolyzation of one or more 3rd generation cephalosporin and aztreonam, the presence of a clavulanate sensitive enzyme (Thomson et al., 1996). This test was performed as proposed by Jarlier et al. (1988) with cell density standardisation as described in the Disc diffusion technique.

Simplex polymerase chain reaction (PCR) for the detection of SHV- and CTX-M β-lactamases

Three simplex PCRs were used to detect the *bla*_{SHV}, *bla*_{CTX-M-3}-like and *bla*_{CTX-M-14}-like genes using primers described by Chia et al. (2005). DNA of *Enterobacteriaceae* was isolated as described by Goldenberger et al. (1995). The 25 µl PCR reaction mixture contained 12.5 µl of 2X Master Mix, 0.15 µl of each primer pair of 100 µM, 11.2 µl of double distilled water and 1 µl of DNA template (10-50 ng). Initial denaturation was done at 94°C for 2 min. This was followed by 35 times denaturation at 94°C for 1 min, annealing at 62°C for 1 min and extension at 72°C for 1 min. Final extension was also done at 72°C for 10 min. PCR products were separated using gel electrophoresis in 3% agarose with subsequent ethidium-bromide staining prior to documentation of the gel.

RESULTS AND DISCUSSION

With recent findings of ESBL-producing *Enterobacteriaceae* in foods like meat, fish, and raw milk, assessment of animal foods as reservoirs and sources of such strains into the food production chain has been recommended (Geser et al., 2011). Fresh and fermented camel milk supply chains were therefore analysed for occurrence of ESBL in *Enterobacteriaceae*.

This bacterial family was below the detection limit of 10 colony forming units (cfu) at milking and first collection points, but was present at 10⁻⁵ - 10⁶ cfu/ml in final market in raw camel milk and at 10⁻¹⁰-10⁵cfu/ml in suusac. These findings concur with those of Kongo et al. (2008) who reported between 5.9 and 7.0 log cfu/ml *Enterobacteriaceae* in cow milk used for manufacture of a traditional Portuguese raw milk cheese. *Enterobacteriaceae* counts ranging from 2.9-6.57 log cfu/ml were determined in cow milk from various points between milking and sale in Mali (Bonfoh et al., 2003). Udder infection, water quality, hygiene behaviour in relation to hand washing, cleaning and disinfection of containers are key areas that contribute to such contaminations in non-industrialised milk production (Bonfoh et al., 2006).

Total of 123 isolates were classified into 15 species belonging to 10 genera with a predominance of *E. coli* (Table 2). Similarly, a high species variety among *Enterobacteriaceae* such as *K. oxytoca*, *S. sakazakii*, *K. pneumoniae* subsp. *pneumoniae*, *E. coli*, *K. ornithinolytica*, and *S. odorifera* were also reported in raw milk used for the manufacture of a traditional Portuguese raw cow milk cheese with *E. sakazakii* and *K. pneumonia* subsp. *pneumoniae* among the dominant species (Kongo et al., 2008). It was of concern that the most prevalent *Enterobacteriaceae* in our study namely *K. pneumoniae*, *E. coli* and *E. sakazakii* have been implicated as the major ESBL-producing *Enterobacteriaceae* worldwide (Malik et al., 2005).

The *Enterobacteriaceae* isolates were first screened for resistance to ampicillin as starting point for multi-drug resistance tests in order to predict the presence of integrons. Amongst the 96 isolates tested, 61 (63.5%) were resistant to ampicillin, 12 (12.5%) intermediate susceptible and 23 (24%) susceptible. Amongst the resistant isolates, 46 (47.5%) were *E. coli*, 45 (45.9%) *K. pneumoniae* subsp. *Pneumonia* and 16 (6.6%) *E. sakazakii*. Twelve isolates including 6 *K. pneumonia* subsp. *pneumoniae* (50%), 5 *E. sakazakii* (41.7%) and 1 *E. coli* (8.3%) were intermediate susceptible to ampicillin. Only 23 (24%) of the isolates were susceptible to...
Table 2. Identity, prevalence and viable counts of *Enterobacteriaceae* (n = 160) isolated from raw camel milk and *suusac*.

<table>
<thead>
<tr>
<th>Species</th>
<th>No. of Isolates</th>
<th>Log cfu/ml<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>50</td>
<td>8.0</td>
</tr>
<tr>
<td>Klebsiella pneum. pneumoniae</td>
<td>35</td>
<td>6.5</td>
</tr>
<tr>
<td>Enterobacter sakazakii</td>
<td>20</td>
<td>7.5</td>
</tr>
<tr>
<td>Acinetobacter spp.</td>
<td>3</td>
<td>4.8</td>
</tr>
<tr>
<td>Kleuyvera spp</td>
<td>2</td>
<td>5.2</td>
</tr>
<tr>
<td>Leklercia adecarboxylica</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>Serratia ficaria</td>
<td>2</td>
<td>4.8</td>
</tr>
<tr>
<td>Serratia odorfera</td>
<td>2</td>
<td>8.4</td>
</tr>
<tr>
<td>Enterobacter aerogenes</td>
<td>1</td>
<td>4.9</td>
</tr>
<tr>
<td>Enterobacter agglomerans</td>
<td>1</td>
<td>4.7</td>
</tr>
<tr>
<td>Klebsiella ornitholytica</td>
<td>1</td>
<td>6.5</td>
</tr>
<tr>
<td>Klebsiella oxytoxa</td>
<td>1</td>
<td>5.4</td>
</tr>
<tr>
<td>Pseudomonas flourescence/ putida</td>
<td>1</td>
<td>5.4</td>
</tr>
<tr>
<td>Salmonella arizonaee</td>
<td>1</td>
<td>8.6</td>
</tr>
<tr>
<td>Achromobacter spp.</td>
<td>1</td>
<td>4.9</td>
</tr>
</tbody>
</table>

^aNc = not calculated.

Figure 1. Presumptive ESBL resistance patterns for *E. coli*, *K. pneumoniae* and *E. sakazakii* with <30 mm diameter zone size for extended-spectrum cephalosporins.

Ampicillin with 16 (70%) of them *E. coli* and none of the *K. pneumoniae* subsp. *pneumoniae*.

A total of 40 *Enterobacteriaceae* isolates among 96 tested were also positive for the cephalosporin susceptibility test, 90% of the positives were resistant to ceftazidime. The isolates including 20 (50%) *E. coli*, 12 (30%) *K. pneumonia* subsp. *pneumoniae* and 8 (20%) *E. sakazakii* displayed different susceptibilities to cefotaxime, ceftriaxone and ceftazidime (Figure 1). Two *E. sakazakii* isolates were resistant to more than one extended-cephalosporin with one isolate resistant to both cefotaxime and ceftazidime and one to ceftriaxone and ceftazidime. Although, this inhibition zone in disc diffusion test of ≤ 30 mm for extended-spectrum cephalosporins...
Table 3. ESBL genes \textit{bla}\textsubscript{SHV}, \textit{bla}\textsubscript{CTX-M-3}-like and \textit{bla}\textsubscript{CTX-M14}-like genes in \textit{Enterobacter sakazakii}, \textit{Escherichia coli} and \textit{Klebsiella pneumoniae} subsp. \textit{pneumoniae} isolates from raw and fermented camel milk.

<table>
<thead>
<tr>
<th>Strains</th>
<th>\textit{bla}\textsubscript{SHV}</th>
<th>\textit{bla}\textsubscript{CTX-M-3}-like</th>
<th>\textit{bla}\textsubscript{CTX-M14}-like</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{E. coli}</td>
<td>2</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>\textit{E. sakazakii}</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>\textit{K. pneumoniae}</td>
<td>34</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>37</td>
<td>25</td>
<td>11</td>
</tr>
</tbody>
</table>

Figure 2. Gel electrophoresis filtered picture of \textit{bla}\textsubscript{SHV} simplex PCR amplification of \textit{Enterobacteriaceae} isolates. Note: Lanes 1-17 contained the PCR amplicons from indicated isolates or references: [Lane, isolate no. or references]; L, 100-bp DNA ladder (New England Biolabs); 1, no DNA in amplification assay; 2, \textit{Klebsiella pneumoniae} ATCC 700603; 3, \textit{E. coli} GSBL 713901; 4, \textit{Escherichia coli} ATCC 25922; 5, no. 15 \textit{Klebsiella pneumoniae} subsp. \textit{pneumoniae}; 6, no. 27 \textit{Klebsiella pneumoniae} subsp. \textit{pneumoniae}; 7, no. 18 \textit{Enterobacter sakazakii}; 8, no. 14 \textit{Escherichia coli}; 9, no. 19b \textit{Klebsiella pneumoniae} subsp. \textit{pneumoniae}; 10, no. 10 \textit{Escherichia coli}; 11, no. 87 \textit{Escherichia coli}; 12, no. 9 \textit{Escherichia coli}; 13, no. 88 \textit{Klebsiella pneumoniae} subsp. \textit{pneumoniae}; 14, no. 17 \textit{Klebsiella pneumoniae} subsp. \textit{pneumoniae}; 15, no. 90 \textit{Escherichia coli}; 16, no. 80 \textit{Escherichia coli}; 17, no. 44 \textit{Klebsiella pneumoniae} subsp. \textit{pneumoniae}.

implies ESBL production (Thomson et al., 1996; Pitout et al., 1997), the strains were all ESBL negative as tested by the double disc diffusion test at both test distances (30 and 25 mm). ESBL-producers have the ability to hydrolyze and cause resistance to third-generation \(\beta\)-lactam antibiotics (Pitout and Laupland, 2008).

Prevalence of \textit{bla}\textsubscript{SHV}, \textit{bla}\textsubscript{CTX-M-3}-like and \textit{bla}\textsubscript{CTX-M14}-like genes, determined as PCR-positive targets, was 37 (60%), 25 (40%) and 11 (18%), respectively (Table 3). \textit{K. pneumoniae} subsp. \textit{pneumoniae} isolates possessed 54 (74%) of the SHV (Figure 2) and CTX-M \(\beta\)-lactamase encoding genes detected were 14 (19%) and 5 (7%) for \textit{E. sakazakii} and \textit{E. coli} positive, respectively. SHV-1 \(\beta\)-lactamase is commonly associated with \textit{K. pneumoniae} subsp. \textit{pneumoniae} and is accountable for up to 20% of plasmid mediated ampicillin resistance (Bradford, 2001). CTX-M, first reported in Germany in 1989, has rapidly spread worldwide in a range of bacteria but in particular
among Enterobacteriaceae (Bonnet, 2004). CTX-M can better hydrolyze cefotaxime than ceftazidime, both of which are third-generation cephalosporins developed to prevent spread of genes encoding these enzymes (Paterson, 2006). Additionally, plasmids with such ESBL encoding genes also encode resistances to other ABs like aminogycosides, antifolates, tetracycline and fluoroquinolones (Wiegand et al., 2007). The finding in the present study shows 13 K. pneumonia subsp. pneumoniae isolates harbouring both blaSHV and blaCTX-M-3-like genes and 1 possessing all 3 genes, further emphasising the potential health risk posed by these bacterial pathogens in camel milk.

The results show that double disc diffusion test and PCR tests differed in their detection of ESBL producing strains. In vitro susceptibilities of Enterobacteriaceae that are ESBL-producers have been found to be misleading and isolates showing susceptibility to given cephalosporins are not always effectively controlled by the same in clinical practice (Fluit et al., 2001). Furthermore, the disc diffusion breakpoints for the cephalosporins by the CLSI, were created in the 80s, before attention was paid to the role of ESBLs (Paterson, 2006). However, upon comparing the PCR results with ampicillin resistance test, we found out that twenty-eight isolates positive to SHV were also ampicillin resistant especially 27 of K. pneumonia subsp. pneumoniae isolates. Molecular methods therefore remain the most reliable methods of choice for identification of ESBL-producing isolates.

Conclusions

A high diversity of Enterobacteriaceae in camel milk calls for measures to improve handling of camel milk with regard to udder health water quality and hygiene practices. The finding of ESBL-positive isolates with some K. pneumonia subsp. pneumoniae harbouring more than one gene in the remote semi-arid regions shows the global antimicrobial challenge posed by these the Enterobacteriaceae. Molecular methods were noted to be most reliable methods of choice for identification of ESBL-producing isolates.

ACKNOWLEDGEMENTS

This project was funded by the North-South Centre of Swiss Federal Institute of Technology, Zurich (ETH Zurich). The authors thank Zakariah Farah (ETH Zurich), Mario Younan (Kenya Agricultural Research Institute), Esther Schelling (Swiss Tropical Institute), Jakob Zinstag (Swiss Tropical Institute), Chris Field (Kenya Camel Association), Dasel Mulwa (University of Nairobi), Monika Weller (ETH Zurich) and Swiss Federal Scholarship Commision (ESKAS) for their invaluable personal and institutional support and assistance.

REFERENCES

Standards Unit, Evaluations and Standards Laboratory (2008). Laboratory detection and reporting of bacteria with extended spectrum β-lactamases. Reference No. QSOP 512.2.

