Response of green manure legumes to rhizobia inoculation and started-N fertilizer application

G.N. Chemining'wa1, J.W. Muthomi1, J.G. Mureithi2 and C.K.K. Gachene3
1Department of Plant Science and Crop Protection, University of Nairobi, P.O. Box 29053, Nairobi, Kenya.
2National Agricultural Research Laboratories, P.O. Box 14733, Nairobi, Kenya.
3Department of Land and Agricultural Resources Management and Agricultural Technology, University of Nairobi, P.O. Box 29053, Nairobi, Kenya.
1Email: umechemie@hotmail.com

ABSTRACT
A study was conducted in Kenya on a farmer's field at Katumani and at the University of Nairobi's Field Station farm in 2003 short rains and 2004 long rains to assess the need for rhizobia inoculation of green manure legume (GML) species. The GMLs tested were mucuna (Mucuna pruriens (L.) DC), lablab (Lablab purpureus (L.) Sweet cv. Rungai), crotalaria (Crotalaria ochroleuca G. Don), canavalia (Canavalia ensiformis (L.) DC) and limabeam (Phaseolus lunatus L.). The treatments comprised GMLs inoculated with appropriate rhizobia, GMLs supplied with starter-N (urea at 50 kg N ha⁻¹) and GMLs grown without rhizobia and starter-N. Inoculation increased nodule numbers plant⁻¹ in mucuna, crotalaria and lablab, but there was no effect in limabeam and canavalia. Starter-N application reduced GML nodule numbers in long rains at Kabete, but increased for mucuna, crotalaria and lablab in short rains at Katumani. Generally, inoculation improved NDM plant⁻¹ and individual NDM for mucuna, crotalaria and lablab. N-addition did not depress NDM plant⁻¹ and individual NDM. Inoculation and N-addition had no effect on dry shoot biomass. Increase in modulation observed with inoculation did not translate into improved shoot biomass. Hence, inoculation and starter N-application for GMLs may only be necessary to conserve and augment soil-N.

Key words: Green manure legumes, nodule dry matter, nodule number, shoot biomass