Publications


2011

2006

Musembi, CN.  2006.  Breathing Life into Dead Theories About Property Rights: De Soto and Land Relations in Rural Africa. AbstractWebsite

Presumption of a direct causal link between formalisation of property rights and economic productivity is back on the international development agenda. Belief in such a direct causal relationship had been abandoned in the early 1990s, following four decades of land tenure reform experiments that failed to produce the anticipated efficiency results. The work of Hernando de Soto has provided the springboard for this revival. De Soto argues that formal property rights hold the key to poverty reduction by unlocking the capital potential of assets held informally by poor people. De Soto’s justifications of formal title do not differ much from justifications that were advanced for ambitious land tenure reforms in various sub-Saharan African countries, starting with Kenya in the 1950s. Introduction of formal title in the African areas was seen as the key to solving problems of land degradation and improving agriculture by providing farmers with security of tenure that would create incentives for further investment in the land. This paper argues that there are five shortcomings in both the old and contemporary arguments for formalisation of land title. First, legality is constructed narrowly to mean only formal legality. Therefore legal pluralism is equated with extra-legality. Second, there is an underlying social evolutionist bias that presumes inevitability of the transition to private (conflated with individual) ownership as the destiny of all societies. Third, the presumed link between formal title and access to credit facilities has not been borne out by empirical evidence. Fourth, markets in land are understood narrowly to refer only to ’formal markets’. Fifth, the arguments in favour of formulisation of title as the means to secure tenure ignore the fact that formal title could also generate insecurity.

2005

MUSEMBI, PROFNGANDABENJAMIN.  2005.  Kirigia JM, Sambo LG, Nganda B, Mwabu GM, Chatora R, Mwase T., (2005), Determinants of health insurance ownership among South African women BMC Health Services Research Vol. 5:17 (28 February 2005).. WHO. : Boniface Kavoi, Andrew Makanya, Jameela Hassanali, Hans-Erik Carlsson, Stephen Kiama Abstract
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Olfactory acuity differs among animal species depending on age and dependence on smell. However, the attendant functional anatomy has not been elucidated. We sought to determine the functional structure of the olfactory mucosa in suckling and adult dog and sheep. Mucosal samples harvested from ethmoturbinates were analyzed qualitatively and quantitatively. In both species, the olfactory mucosa comprised olfactory, supporting and basal cells, and a lamina propria containing bundles of olfactory cell axons, Bowman’s glands and vascular elements. The olfactory cells terminated apically with an expanded knob, from which cilia projected in a radial fashion from its base and in form of a tuft from its apex in the dog and the sheep respectively. Olfactory cilia per knob weremorenumerous in the dog (19±3) compared to the sheep (7±2) (p < 0.05). In the dog, axonal bundles exhibited one to two centrally located capillaries and the bundles were of greater diameters (73.3±10.3_m) than those of the sheep (50.6±6.8_m), which had no capillaries. From suckling to adulthood in the dog, the packing density of the olfactory and supporting cells increased by 22.5% and 12.6% respectively. Surprisingly in the sheep, the density of the olfactory cells decreased by 26.2% while that of the supportive cells showed no change. Overall epithelial thickness reached 72.5±2.9_m in the dog and 56.8±3.1_m in the sheep. These observations suggest that the mucosa is better structurally refined during maturation in the dog than in the sheep.
MUSEMBI, PROFNGANDABENJAMIN.  2005.  Benjamin Nganda, 2005, Poverty Reduction Strategy Papers: An Overview of Health Components, African Health Monitor January . WHO. : Boniface Kavoi, Andrew Makanya, Jameela Hassanali, Hans-Erik Carlsson, Stephen Kiama Abstract
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Olfactory acuity differs among animal species depending on age and dependence on smell. However, the attendant functional anatomy has not been elucidated. We sought to determine the functional structure of the olfactory mucosa in suckling and adult dog and sheep. Mucosal samples harvested from ethmoturbinates were analyzed qualitatively and quantitatively. In both species, the olfactory mucosa comprised olfactory, supporting and basal cells, and a lamina propria containing bundles of olfactory cell axons, Bowman’s glands and vascular elements. The olfactory cells terminated apically with an expanded knob, from which cilia projected in a radial fashion from its base and in form of a tuft from its apex in the dog and the sheep respectively. Olfactory cilia per knob weremorenumerous in the dog (19±3) compared to the sheep (7±2) (p < 0.05). In the dog, axonal bundles exhibited one to two centrally located capillaries and the bundles were of greater diameters (73.3±10.3_m) than those of the sheep (50.6±6.8_m), which had no capillaries. From suckling to adulthood in the dog, the packing density of the olfactory and supporting cells increased by 22.5% and 12.6% respectively. Surprisingly in the sheep, the density of the olfactory cells decreased by 26.2% while that of the supportive cells showed no change. Overall epithelial thickness reached 72.5±2.9_m in the dog and 56.8±3.1_m in the sheep. These observations suggest that the mucosa is better structurally refined during maturation in the dog than in the sheep.

2004

MUSEMBI, PROFNGANDABENJAMIN.  2004.  Germano Mwabu, Joseph Wang. University of Nairobi Press. : Boniface Kavoi, Andrew Makanya, Jameela Hassanali, Hans-Erik Carlsson, Stephen Kiama Abstract
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Olfactory acuity differs among animal species depending on age and dependence on smell. However, the attendant functional anatomy has not been elucidated. We sought to determine the functional structure of the olfactory mucosa in suckling and adult dog and sheep. Mucosal samples harvested from ethmoturbinates were analyzed qualitatively and quantitatively. In both species, the olfactory mucosa comprised olfactory, supporting and basal cells, and a lamina propria containing bundles of olfactory cell axons, Bowman’s glands and vascular elements. The olfactory cells terminated apically with an expanded knob, from which cilia projected in a radial fashion from its base and in form of a tuft from its apex in the dog and the sheep respectively. Olfactory cilia per knob weremorenumerous in the dog (19±3) compared to the sheep (7±2) (p < 0.05). In the dog, axonal bundles exhibited one to two centrally located capillaries and the bundles were of greater diameters (73.3±10.3_m) than those of the sheep (50.6±6.8_m), which had no capillaries. From suckling to adulthood in the dog, the packing density of the olfactory and supporting cells increased by 22.5% and 12.6% respectively. Surprisingly in the sheep, the density of the olfactory cells decreased by 26.2% while that of the supportive cells showed no change. Overall epithelial thickness reached 72.5±2.9_m in the dog and 56.8±3.1_m in the sheep. These observations suggest that the mucosa is better structurally refined during maturation in the dog than in the sheep.
MUSEMBI, PROFNGANDABENJAMIN.  2004.  Germano Mwabu, Joseph Wang. University of Nairobi Press. : Boniface Kavoi, Andrew Makanya, Jameela Hassanali, Hans-Erik Carlsson, Stephen Kiama Abstract
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Olfactory acuity differs among animal species depending on age and dependence on smell. However, the attendant functional anatomy has not been elucidated. We sought to determine the functional structure of the olfactory mucosa in suckling and adult dog and sheep. Mucosal samples harvested from ethmoturbinates were analyzed qualitatively and quantitatively. In both species, the olfactory mucosa comprised olfactory, supporting and basal cells, and a lamina propria containing bundles of olfactory cell axons, Bowman’s glands and vascular elements. The olfactory cells terminated apically with an expanded knob, from which cilia projected in a radial fashion from its base and in form of a tuft from its apex in the dog and the sheep respectively. Olfactory cilia per knob weremorenumerous in the dog (19±3) compared to the sheep (7±2) (p < 0.05). In the dog, axonal bundles exhibited one to two centrally located capillaries and the bundles were of greater diameters (73.3±10.3_m) than those of the sheep (50.6±6.8_m), which had no capillaries. From suckling to adulthood in the dog, the packing density of the olfactory and supporting cells increased by 22.5% and 12.6% respectively. Surprisingly in the sheep, the density of the olfactory cells decreased by 26.2% while that of the supportive cells showed no change. Overall epithelial thickness reached 72.5±2.9_m in the dog and 56.8±3.1_m in the sheep. These observations suggest that the mucosa is better structurally refined during maturation in the dog than in the sheep.

2003

MUSEMBI, PROFNGANDABENJAMIN.  2003.  Nganda B.; J Wang. International Union Against Tuberculosis & Lung Disease. : Boniface Kavoi, Andrew Makanya, Jameela Hassanali, Hans-Erik Carlsson, Stephen Kiama Abstract
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Olfactory acuity differs among animal species depending on age and dependence on smell. However, the attendant functional anatomy has not been elucidated. We sought to determine the functional structure of the olfactory mucosa in suckling and adult dog and sheep. Mucosal samples harvested from ethmoturbinates were analyzed qualitatively and quantitatively. In both species, the olfactory mucosa comprised olfactory, supporting and basal cells, and a lamina propria containing bundles of olfactory cell axons, Bowman’s glands and vascular elements. The olfactory cells terminated apically with an expanded knob, from which cilia projected in a radial fashion from its base and in form of a tuft from its apex in the dog and the sheep respectively. Olfactory cilia per knob weremorenumerous in the dog (19±3) compared to the sheep (7±2) (p < 0.05). In the dog, axonal bundles exhibited one to two centrally located capillaries and the bundles were of greater diameters (73.3±10.3_m) than those of the sheep (50.6±6.8_m), which had no capillaries. From suckling to adulthood in the dog, the packing density of the olfactory and supporting cells increased by 22.5% and 12.6% respectively. Surprisingly in the sheep, the density of the olfactory cells decreased by 26.2% while that of the supportive cells showed no change. Overall epithelial thickness reached 72.5±2.9_m in the dog and 56.8±3.1_m in the sheep. These observations suggest that the mucosa is better structurally refined during maturation in the dog than in the sheep.
MUSEMBI, PROFNGANDABENJAMIN.  2003.  Nganda B.; Wang. University of Nairobi Press. : Boniface Kavoi, Andrew Makanya, Jameela Hassanali, Hans-Erik Carlsson, Stephen Kiama Abstract
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Olfactory acuity differs among animal species depending on age and dependence on smell. However, the attendant functional anatomy has not been elucidated. We sought to determine the functional structure of the olfactory mucosa in suckling and adult dog and sheep. Mucosal samples harvested from ethmoturbinates were analyzed qualitatively and quantitatively. In both species, the olfactory mucosa comprised olfactory, supporting and basal cells, and a lamina propria containing bundles of olfactory cell axons, Bowman’s glands and vascular elements. The olfactory cells terminated apically with an expanded knob, from which cilia projected in a radial fashion from its base and in form of a tuft from its apex in the dog and the sheep respectively. Olfactory cilia per knob weremorenumerous in the dog (19±3) compared to the sheep (7±2) (p < 0.05). In the dog, axonal bundles exhibited one to two centrally located capillaries and the bundles were of greater diameters (73.3±10.3_m) than those of the sheep (50.6±6.8_m), which had no capillaries. From suckling to adulthood in the dog, the packing density of the olfactory and supporting cells increased by 22.5% and 12.6% respectively. Surprisingly in the sheep, the density of the olfactory cells decreased by 26.2% while that of the supportive cells showed no change. Overall epithelial thickness reached 72.5±2.9_m in the dog and 56.8±3.1_m in the sheep. These observations suggest that the mucosa is better structurally refined during maturation in the dog than in the sheep.
MUSEMBI, PROFNGANDABENJAMIN.  2003.  Germano Mwabu, Joseph Wang. African Development Bank Review. : Boniface Kavoi, Andrew Makanya, Jameela Hassanali, Hans-Erik Carlsson, Stephen Kiama Abstract
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Olfactory acuity differs among animal species depending on age and dependence on smell. However, the attendant functional anatomy has not been elucidated. We sought to determine the functional structure of the olfactory mucosa in suckling and adult dog and sheep. Mucosal samples harvested from ethmoturbinates were analyzed qualitatively and quantitatively. In both species, the olfactory mucosa comprised olfactory, supporting and basal cells, and a lamina propria containing bundles of olfactory cell axons, Bowman’s glands and vascular elements. The olfactory cells terminated apically with an expanded knob, from which cilia projected in a radial fashion from its base and in form of a tuft from its apex in the dog and the sheep respectively. Olfactory cilia per knob weremorenumerous in the dog (19±3) compared to the sheep (7±2) (p < 0.05). In the dog, axonal bundles exhibited one to two centrally located capillaries and the bundles were of greater diameters (73.3±10.3_m) than those of the sheep (50.6±6.8_m), which had no capillaries. From suckling to adulthood in the dog, the packing density of the olfactory and supporting cells increased by 22.5% and 12.6% respectively. Surprisingly in the sheep, the density of the olfactory cells decreased by 26.2% while that of the supportive cells showed no change. Overall epithelial thickness reached 72.5±2.9_m in the dog and 56.8±3.1_m in the sheep. These observations suggest that the mucosa is better structurally refined during maturation in the dog than in the sheep.

2002

MUSEMBI, PROFNGANDABENJAMIN.  2002.  Nganda, Benjamin M (2002) . African Development Bank Review. : Boniface Kavoi, Andrew Makanya, Jameela Hassanali, Hans-Erik Carlsson, Stephen Kiama Abstract
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Olfactory acuity differs among animal species depending on age and dependence on smell. However, the attendant functional anatomy has not been elucidated. We sought to determine the functional structure of the olfactory mucosa in suckling and adult dog and sheep. Mucosal samples harvested from ethmoturbinates were analyzed qualitatively and quantitatively. In both species, the olfactory mucosa comprised olfactory, supporting and basal cells, and a lamina propria containing bundles of olfactory cell axons, Bowman’s glands and vascular elements. The olfactory cells terminated apically with an expanded knob, from which cilia projected in a radial fashion from its base and in form of a tuft from its apex in the dog and the sheep respectively. Olfactory cilia per knob weremorenumerous in the dog (19±3) compared to the sheep (7±2) (p < 0.05). In the dog, axonal bundles exhibited one to two centrally located capillaries and the bundles were of greater diameters (73.3±10.3_m) than those of the sheep (50.6±6.8_m), which had no capillaries. From suckling to adulthood in the dog, the packing density of the olfactory and supporting cells increased by 22.5% and 12.6% respectively. Surprisingly in the sheep, the density of the olfactory cells decreased by 26.2% while that of the supportive cells showed no change. Overall epithelial thickness reached 72.5±2.9_m in the dog and 56.8±3.1_m in the sheep. These observations suggest that the mucosa is better structurally refined during maturation in the dog than in the sheep.
MUSEMBI, PROFNGANDABENJAMIN.  2002.  Germano Mwabu, Joseph Wang. African Development Bank Review. : Boniface Kavoi, Andrew Makanya, Jameela Hassanali, Hans-Erik Carlsson, Stephen Kiama Abstract
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Olfactory acuity differs among animal species depending on age and dependence on smell. However, the attendant functional anatomy has not been elucidated. We sought to determine the functional structure of the olfactory mucosa in suckling and adult dog and sheep. Mucosal samples harvested from ethmoturbinates were analyzed qualitatively and quantitatively. In both species, the olfactory mucosa comprised olfactory, supporting and basal cells, and a lamina propria containing bundles of olfactory cell axons, Bowman’s glands and vascular elements. The olfactory cells terminated apically with an expanded knob, from which cilia projected in a radial fashion from its base and in form of a tuft from its apex in the dog and the sheep respectively. Olfactory cilia per knob weremorenumerous in the dog (19±3) compared to the sheep (7±2) (p < 0.05). In the dog, axonal bundles exhibited one to two centrally located capillaries and the bundles were of greater diameters (73.3±10.3_m) than those of the sheep (50.6±6.8_m), which had no capillaries. From suckling to adulthood in the dog, the packing density of the olfactory and supporting cells increased by 22.5% and 12.6% respectively. Surprisingly in the sheep, the density of the olfactory cells decreased by 26.2% while that of the supportive cells showed no change. Overall epithelial thickness reached 72.5±2.9_m in the dog and 56.8±3.1_m in the sheep. These observations suggest that the mucosa is better structurally refined during maturation in the dog than in the sheep.

2001

MUSEMBI, PROFNGANDABENJAMIN.  2001.  Benjamin Nganda, 2001, . international Institute for Development Studies. : Boniface Kavoi, Andrew Makanya, Jameela Hassanali, Hans-Erik Carlsson, Stephen Kiama Abstract
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Olfactory acuity differs among animal species depending on age and dependence on smell. However, the attendant functional anatomy has not been elucidated. We sought to determine the functional structure of the olfactory mucosa in suckling and adult dog and sheep. Mucosal samples harvested from ethmoturbinates were analyzed qualitatively and quantitatively. In both species, the olfactory mucosa comprised olfactory, supporting and basal cells, and a lamina propria containing bundles of olfactory cell axons, Bowman’s glands and vascular elements. The olfactory cells terminated apically with an expanded knob, from which cilia projected in a radial fashion from its base and in form of a tuft from its apex in the dog and the sheep respectively. Olfactory cilia per knob weremorenumerous in the dog (19±3) compared to the sheep (7±2) (p < 0.05). In the dog, axonal bundles exhibited one to two centrally located capillaries and the bundles were of greater diameters (73.3±10.3_m) than those of the sheep (50.6±6.8_m), which had no capillaries. From suckling to adulthood in the dog, the packing density of the olfactory and supporting cells increased by 22.5% and 12.6% respectively. Surprisingly in the sheep, the density of the olfactory cells decreased by 26.2% while that of the supportive cells showed no change. Overall epithelial thickness reached 72.5±2.9_m in the dog and 56.8±3.1_m in the sheep. These observations suggest that the mucosa is better structurally refined during maturation in the dog than in the sheep.

1998

MUSEMBI, PROFNGANDABENJAMIN.  1998.  Nganda, B. ., (1998), The Equity Objective in the Kenyan Health Policy: An Interpretation. Eastern Africa Social Science Research Review, OSSREA, Volume XIV No. 1, January.. Eastern Africa Social Research Review (OSSREA). : Boniface Kavoi, Andrew Makanya, Jameela Hassanali, Hans-Erik Carlsson, Stephen Kiama Abstract
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Olfactory acuity differs among animal species depending on age and dependence on smell. However, the attendant functional anatomy has not been elucidated. We sought to determine the functional structure of the olfactory mucosa in suckling and adult dog and sheep. Mucosal samples harvested from ethmoturbinates were analyzed qualitatively and quantitatively. In both species, the olfactory mucosa comprised olfactory, supporting and basal cells, and a lamina propria containing bundles of olfactory cell axons, Bowman’s glands and vascular elements. The olfactory cells terminated apically with an expanded knob, from which cilia projected in a radial fashion from its base and in form of a tuft from its apex in the dog and the sheep respectively. Olfactory cilia per knob weremorenumerous in the dog (19±3) compared to the sheep (7±2) (p < 0.05). In the dog, axonal bundles exhibited one to two centrally located capillaries and the bundles were of greater diameters (73.3±10.3_m) than those of the sheep (50.6±6.8_m), which had no capillaries. From suckling to adulthood in the dog, the packing density of the olfactory and supporting cells increased by 22.5% and 12.6% respectively. Surprisingly in the sheep, the density of the olfactory cells decreased by 26.2% while that of the supportive cells showed no change. Overall epithelial thickness reached 72.5±2.9_m in the dog and 56.8±3.1_m in the sheep. These observations suggest that the mucosa is better structurally refined during maturation in the dog than in the sheep.
MUSEMBI, PROFNGANDABENJAMIN.  1998.  Health and Poverty in Kenya, Benjamin Nganda and G. Mwabu, Chapter 3, in J. Bahemuka, B. Nganda and C. Nzioka (ed), Poverty Revisited. February.. international Institute for Development Studies. : Boniface Kavoi, Andrew Makanya, Jameela Hassanali, Hans-Erik Carlsson, Stephen Kiama Abstract
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Olfactory acuity differs among animal species depending on age and dependence on smell. However, the attendant functional anatomy has not been elucidated. We sought to determine the functional structure of the olfactory mucosa in suckling and adult dog and sheep. Mucosal samples harvested from ethmoturbinates were analyzed qualitatively and quantitatively. In both species, the olfactory mucosa comprised olfactory, supporting and basal cells, and a lamina propria containing bundles of olfactory cell axons, Bowman’s glands and vascular elements. The olfactory cells terminated apically with an expanded knob, from which cilia projected in a radial fashion from its base and in form of a tuft from its apex in the dog and the sheep respectively. Olfactory cilia per knob weremorenumerous in the dog (19±3) compared to the sheep (7±2) (p < 0.05). In the dog, axonal bundles exhibited one to two centrally located capillaries and the bundles were of greater diameters (73.3±10.3_m) than those of the sheep (50.6±6.8_m), which had no capillaries. From suckling to adulthood in the dog, the packing density of the olfactory and supporting cells increased by 22.5% and 12.6% respectively. Surprisingly in the sheep, the density of the olfactory cells decreased by 26.2% while that of the supportive cells showed no change. Overall epithelial thickness reached 72.5±2.9_m in the dog and 56.8±3.1_m in the sheep. These observations suggest that the mucosa is better structurally refined during maturation in the dog than in the sheep.
MUSEMBI, PROFNGANDABENJAMIN.  1998.  Analysis and Evaluation of Poverty in Kenya, in conjunction with others, Chapter 1, in J. Bahemuka, Benjamin Nganda and Charles Nzioka (ed), Poverty Revisited. February. international Institute for Development Studies. : Boniface Kavoi, Andrew Makanya, Jameela Hassanali, Hans-Erik Carlsson, Stephen Kiama Abstract
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Olfactory acuity differs among animal species depending on age and dependence on smell. However, the attendant functional anatomy has not been elucidated. We sought to determine the functional structure of the olfactory mucosa in suckling and adult dog and sheep. Mucosal samples harvested from ethmoturbinates were analyzed qualitatively and quantitatively. In both species, the olfactory mucosa comprised olfactory, supporting and basal cells, and a lamina propria containing bundles of olfactory cell axons, Bowman’s glands and vascular elements. The olfactory cells terminated apically with an expanded knob, from which cilia projected in a radial fashion from its base and in form of a tuft from its apex in the dog and the sheep respectively. Olfactory cilia per knob weremorenumerous in the dog (19±3) compared to the sheep (7±2) (p < 0.05). In the dog, axonal bundles exhibited one to two centrally located capillaries and the bundles were of greater diameters (73.3±10.3_m) than those of the sheep (50.6±6.8_m), which had no capillaries. From suckling to adulthood in the dog, the packing density of the olfactory and supporting cells increased by 22.5% and 12.6% respectively. Surprisingly in the sheep, the density of the olfactory cells decreased by 26.2% while that of the supportive cells showed no change. Overall epithelial thickness reached 72.5±2.9_m in the dog and 56.8±3.1_m in the sheep. These observations suggest that the mucosa is better structurally refined during maturation in the dog than in the sheep.
MUSEMBI, PROFNGANDABENJAMIN.  1998.  Judith Bahemuka, Benjamin Nganda and Charles Nzioka, (Editors) (1998), Poverty Revisited: Analysis and Strategies towards Poverty Eradication in Kenya. A UNESCO/University of Nairobi publication, February.. international Institute for Development Studies. : Boniface Kavoi, Andrew Makanya, Jameela Hassanali, Hans-Erik Carlsson, Stephen Kiama Abstract
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Olfactory acuity differs among animal species depending on age and dependence on smell. However, the attendant functional anatomy has not been elucidated. We sought to determine the functional structure of the olfactory mucosa in suckling and adult dog and sheep. Mucosal samples harvested from ethmoturbinates were analyzed qualitatively and quantitatively. In both species, the olfactory mucosa comprised olfactory, supporting and basal cells, and a lamina propria containing bundles of olfactory cell axons, Bowman’s glands and vascular elements. The olfactory cells terminated apically with an expanded knob, from which cilia projected in a radial fashion from its base and in form of a tuft from its apex in the dog and the sheep respectively. Olfactory cilia per knob weremorenumerous in the dog (19±3) compared to the sheep (7±2) (p < 0.05). In the dog, axonal bundles exhibited one to two centrally located capillaries and the bundles were of greater diameters (73.3±10.3_m) than those of the sheep (50.6±6.8_m), which had no capillaries. From suckling to adulthood in the dog, the packing density of the olfactory and supporting cells increased by 22.5% and 12.6% respectively. Surprisingly in the sheep, the density of the olfactory cells decreased by 26.2% while that of the supportive cells showed no change. Overall epithelial thickness reached 72.5±2.9_m in the dog and 56.8±3.1_m in the sheep. These observations suggest that the mucosa is better structurally refined during maturation in the dog than in the sheep.

1996

MUSEMBI, PROFNGANDABENJAMIN.  1996.  Nganda, B. M., (1996), The Role of Markets in the Worsening Epidemiological Environment. Environment and Development Economics Policy Forum, Vol. 1, Part 3, July.. Environment & Development Economic Policy Forum. : Boniface Kavoi, Andrew Makanya, Jameela Hassanali, Hans-Erik Carlsson, Stephen Kiama Abstract
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Olfactory acuity differs among animal species depending on age and dependence on smell. However, the attendant functional anatomy has not been elucidated. We sought to determine the functional structure of the olfactory mucosa in suckling and adult dog and sheep. Mucosal samples harvested from ethmoturbinates were analyzed qualitatively and quantitatively. In both species, the olfactory mucosa comprised olfactory, supporting and basal cells, and a lamina propria containing bundles of olfactory cell axons, Bowman’s glands and vascular elements. The olfactory cells terminated apically with an expanded knob, from which cilia projected in a radial fashion from its base and in form of a tuft from its apex in the dog and the sheep respectively. Olfactory cilia per knob weremorenumerous in the dog (19±3) compared to the sheep (7±2) (p < 0.05). In the dog, axonal bundles exhibited one to two centrally located capillaries and the bundles were of greater diameters (73.3±10.3_m) than those of the sheep (50.6±6.8_m), which had no capillaries. From suckling to adulthood in the dog, the packing density of the olfactory and supporting cells increased by 22.5% and 12.6% respectively. Surprisingly in the sheep, the density of the olfactory cells decreased by 26.2% while that of the supportive cells showed no change. Overall epithelial thickness reached 72.5±2.9_m in the dog and 56.8±3.1_m in the sheep. These observations suggest that the mucosa is better structurally refined during maturation in the dog than in the sheep.

1988

MUSEMBI, PROFNGANDABENJAMIN.  1988.  2. B Nganda, P. S. Owino and A. K. Kilonzo, (1988), ECONOMICS, Part One: African Economic Problems, BEC 103. Prepared for the Faculty of External Degrees Studies, College of Adult and Distance Education, University of Nairobi.. University of Nairobi. : Boniface Kavoi, Andrew Makanya, Jameela Hassanali, Hans-Erik Carlsson, Stephen Kiama Abstract
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Olfactory acuity differs among animal species depending on age and dependence on smell. However, the attendant functional anatomy has not been elucidated. We sought to determine the functional structure of the olfactory mucosa in suckling and adult dog and sheep. Mucosal samples harvested from ethmoturbinates were analyzed qualitatively and quantitatively. In both species, the olfactory mucosa comprised olfactory, supporting and basal cells, and a lamina propria containing bundles of olfactory cell axons, Bowman’s glands and vascular elements. The olfactory cells terminated apically with an expanded knob, from which cilia projected in a radial fashion from its base and in form of a tuft from its apex in the dog and the sheep respectively. Olfactory cilia per knob weremorenumerous in the dog (19±3) compared to the sheep (7±2) (p < 0.05). In the dog, axonal bundles exhibited one to two centrally located capillaries and the bundles were of greater diameters (73.3±10.3_m) than those of the sheep (50.6±6.8_m), which had no capillaries. From suckling to adulthood in the dog, the packing density of the olfactory and supporting cells increased by 22.5% and 12.6% respectively. Surprisingly in the sheep, the density of the olfactory cells decreased by 26.2% while that of the supportive cells showed no change. Overall epithelial thickness reached 72.5±2.9_m in the dog and 56.8±3.1_m in the sheep. These observations suggest that the mucosa is better structurally refined during maturation in the dog than in the sheep.

UoN Websites Search