Avian Pathology

Time-course investigation of infection with a low virulent Pasteurella multocida strain in normal and immune-suppressed 12-week-old free-range chickens

Department of Veterinary Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi, Kenya

Faculty of Science, Open University of Tanzania, P.O. Box 23409, Dar Es Salaam, Tanzania

Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen Stigbøjlen 4, 1870, Frederiksberg C, Denmark

Available online: 15 Sep 2011

To cite this article: P. G. Mbuthia, L. W. Njagi, P. N. Nyaga, L. C. Bebora, U. Minga, J. P. Christensen & J. E. Olsen (2011): Time-course investigation of infection with a low virulent Pasteurella multocida strain in normal and immune-suppressed 12-week-old free-range chickens, Avian Pathology, 40:6, 629-637

To link to this article: http://dx.doi.org/10.1080/03079457.2011.623298

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
Time-course investigation of infection with a low virulent Pasteurella multocida strain in normal and immune-suppressed 12-week-old free-range chickens

P. G. Mbuthia¹, L. W. Njagi¹, P. N. Nyaga¹, L. C. Bebora¹, U. Minga², J. P. Christensen³ and J. E. Olsen³*

¹Department of Veterinary Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi, Kenya, ²Faculty of Science, Open University of Tanzania, P.O. Box 23409, Dar Es Salaam, Tanzania, and ³Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen Stigbojlen 4, 1870 Frederiksberg C., Denmark

Twelve-week-old indigenous chickens, either immune-suppressed using dexamethasone (IS) or non-immune-suppressed (NIS), were challenged with a low virulent strain, Pasteurella multocida strain NCTC 10322¹, and developed clinical signs and pathological lesions typical of chronic fowl cholera. NIS birds demonstrated much more severe signs of fowl cholera than IS birds. With few exceptions, signs recorded in IS and NIS birds were of the same types, but significantly milder in the IS birds, indicating that immune suppression does not change the course of infection but rather the severity of signs in fowl cholera. P. multocida signals by fluorescent in situ hybridization (FISH) were observed between 1 h and 14 days in the lungs, trachea, air sacs, liver, spleen, bursa of Fabricius and caecal tonsils, while signals from other organs mostly were observed after 24 h. More organs had FISH signals in NIS birds than in IS birds and at higher frequency per organ. Many organs were positive by FISH even 14 days post infection, and it is suggested that these organs may be likely places for long-term carriage of P. multocida following infection. The present study has demonstrated the spread of P. multocida in different tissues in chickens and distribution of lesions associated with chronic fowl cholera, and pointed to a decrease of pathology in IS birds. Since dexamethasone mostly affects heterophils, the study suggests that these cells play a role in the development of lesions associated with chronic fowl cholera in chickens.

Introduction

Pasteurella multocida subspecies multocida of capsular type A is the cause of different diseases in animals, including fowl cholera in chickens (Christensen & Bisgaard, 2000). This is a severe, systemic condition with sudden onset of clinical signs and high mortality (Glisson et al., 2008). However, in certain production systems, such as the common free-range scavenging poultry production systems in developing countries, the bacterium may be endemic present (Muhaiwa et al., 2001). Under such circumstances, outbreaks of acute fulminating disease are rare, and infected birds show more chronic clinical signs (Mbuthia et al., 2008).

During fowl cholera infections, P. multocida is believed to enter primarily through the lungs (Christensen & Bisgaard, 2000), even though it has also been shown to invade the intestinal wall in an in vivo chicken loop model (Christensen et al., 2002). The bacterium probably adheres to the epithelial lining and subsequently associates with resident macrophages (Matsumoto et al., 1991), and, through a yet to be understood mechanism, it translocates to the bloodstream and from there to internal organs. Polymorphonuclear neutrophils (PMNs) (heterophils) are considered the first line of defence against the bacterium, but the role of this cell type seems dual, since selective removal of these have been shown to diminish pathological changes (Bojesen et al., 2004). Bacteria have been reported to be detectable in the blood as soon as 6 to 12 h post infection (p.i.) (Rhodes & Rimler, 1990). Death is believed to be caused by endotoxic shock (Harper et al., 2006) and important virulence genes of the bacterium include those encoding the lipopolysaccharide, capsule, fimbriae and other adhesions, in addition to iron-sequestering proteins and a number of outer membrane proteins (Boyece & Adler, 2006; Harper et al., 2006).

Contrary to the detailed knowledge on acute fowl cholera, few reports on the progress of disease in the chronic form are available, including information on the spread of P. multocida organisms from the point of infection into the various organs of chickens. We have recently shown that the pig-derived reference strain NCTC 10322² causes chronic fowl cholera when used to challenge indigenous chickens in Kenya, and further we demonstrated that the age at which these birds are most susceptible with this form of fowl cholera differs from the previously reported age (Mbuthia et al., 2008).

*To whom correspondence should be addressed. Tel: +45 35332784. E-mail: jeo@life.ku.dk
Received 9 August 2011
ISSN 0307-9457 (print)/ISSN 1465-3338 (online)/11/060629-09 © 2011 Houghton Trust Ltd
http://dx.doi.org/10.1080/03079457.2011.623298
In the current study, we have used this strain to investigate the progress of fowl cholera and the spread of bacteria in a time-course study of chronic fowl cholera in challenged indigenous birds.

As mentioned above, chronic fowl cholera seems to be commonly encountered in low-input production systems, where chickens are subjected to different types of stressful conditions and may suffer malnutrition (Aini, 1999). Such birds may show sub-optimal immune reactions. It has previously been shown that birds which have been manipulated to have a less efficient immune response, especially with respect to the cellular immune system, show a decrease in clinical signs when challenged with *P. multocida* (Bojesen et al., 2004). Since immune suppression influences the outcome of disease and may be a decisive factor in low-input production systems, we performed the time-course study with both immune-suppressed (IS) and non-immune-suppressed (NIS) birds.

Materials and Methods

Experimental chickens. A total of 78 indigenous chickens, 12 weeks old, were used in this experiment. Such birds are of an undefined genetic background with an overall low potential for production. However, ecotypes defined according to phenotypic traits cluster on a genotype defined by microsatellite typing (MSoiffe et al., 2001), indicating a degree of selection. Some birds were bought at the age of 1 day old from indigenous chicken eggs, also purchased locally.

Bacteria used to infect chickens. *P. multocida* type strain (NCTC 10322T) maintained on Dorset egg agar was used in the present study. It was spread onto blood agar with 5% citrated calf blood, incubated aerobically at 37°C for 24 h, to check for purity prior to preparation of the inoculums as described previously (Mbuthia et al., 2008).

Immunosuppression of chickens. Birds to be immune-suppressed were injected intramuscularly using dexamethasone (Agar Holland, Soest, The Netherlands) 4 mg/kg body weight per day for 6 days prior to experimental infection, following the protocol of Corrier et al. (1991).

Post-mortem examination. Birds were killed by cervical dislocation and post-mortem examination was performed as described by Bermudez & Stewart-Brown (2003). The dead birds were opened aseptically, tissues and organs observed individually, and gross lesions noted and recorded. The severity of the lesions was scored as mild, moderate or severe as done previously (Shivaprasad & Droual, 2002). For microscopic lesions, a minimum of six sections of a particular organ per chicken were examined. They were scored on the basis of (minus = no lesions), 1 (minimal to mild), 2 (moderate) and 3 (severe). If most sections of the particular organ in one group exhibited minimal to mild lesions, they were given a score of 1, while sections without minimal lesions were recorded as (minus).

Histological examination: fixation and sectioning. The tissue samples were kept fully immersed in labelled bottles containing 10% formalin solution for 24 h. They were then transferred into 70% alcohol, where they remained until trimming was done. The fixed tissues were manually trimmed to a thickness of 2 to 3 mm and processed as paraffin-embedded sections, sectioned to 3 to 5 μm thickness, placed on microscope slides, stained using haemotoxylin and eosin, mounted in destrene 80, dibutylphthalate and xylene, and dried before examination under the microscope.

Fluorescent in situ hybridization technique. Paraffin-embedded tissues were mounted on super-frost plus slides (Menzel-Gläser, Braunschweig, Germany) and processed for the fluorescent in situ hybridization (FISH) test as described previously (Mbuthia et al., 2001).

Bacterial culture. Swabs were placed in 2 ml sterile phosphate-buffered physiological saline and thoroughly vortexed. Tissue samples (1 to 5 g) were macerated in 2 ml sterile phosphate-buffered physiological saline. From this, streaks were made on blood agar (CM55; Oxoid Ltd, Basingstoke, UK), which were incubated aerobically at 37°C for 24 h, for initial culture. Then 0.1 ml of the remaining contents was inoculated onto *Pasteurella*-free 21-day-old Balb/C mice by the intraperitoneal route, as described by Muhairwa et al. (2001), to improve the bacterial recovery rate from these samples. Prior to this, five of the mice from the colony were killed, screened, and certified free of *Pasteurella* spp. Inoculated mice were observed for up to 48 h, after which the surviving mice were sacrificed. Severely sick animals were humanely sacrificed prior to this and processed. The mice were dissected, and the livers and spleens removed aseptically and macerated. The macerated material was streaked onto blood agar and incubated aerobically at 37°C for 24 h.

Experimental procedure and clinical observations. Experimental birds were wing tagged with a number, then allocated randomly into infected and control groups and into IS chickens and NIS chickens. The birds were separated and put in the experimental rooms 48 h prior to inoculation. They were screened for *P. multocida* organisms before experimental inoculation by examination of cloacal and oropharyngeal swabs.

For the experiment on NIS chickens, 34 chickens were used: 24 were infected with *P. multocida* organisms and 10 were used as controls. For the experiment on IS chickens, 44 chickens were used: 24 IS birds were infected with *P. multocida* organisms, while the controls consisted of 10 IS and 10 NIS birds.

Each bird in the challenge groups was inoculated intratracheally with 0.5 ml brain heart infusion broth culture containing 1.2 to 1.9 × 10^6 *P. multocida* organisms, while the controls were inoculated with 0.5 ml sterile brain heart infusion broth medium. The infected and control birds were housed in different rooms located in different houses away from each other. Biosafety measures were maintained during the entire period of the study.

Birds were observed daily for clinical signs by the same person throughout the study period. Initial observations were made without disturbing the birds, and later a close examination and cloacal temperature measurement was carried out while holding each bird. Cloacal temperature below 41.5°C was taken as normal, 41.6°C as mild, around 42.0°C as moderate, and that of over 42.0°C was taken as severe fever.

Two birds, randomly selected from each experimental group, were sacrificed at specified times, namely: hours 0, 1, 3, 6, 12 and 24 and days 2, 3, 5, 7, 10 and 14, post inoculation. Hour 0 was achieved by inoculating the birds and immediately sacrificing them within 5 min. To avoid possible cross-infection, the daily sacrifices started with birds in the control houses before proceeding to the infected houses.

Post-mortem examination was done on the sacrificed birds and swabs and tissue samples were taken aseptically for *P. multocida* re-isolation. Part of the tissue samples were removed and immediately immersed in formalin, where they were kept for histological and FISH test processing.

Statistical analysis. Data obtained during the present study were analysed using the analysis of variance procedures of the statistical analysis systems (SAS Institute, 1996) and the chi-squared test.

Results

No clinical signs, no *P. multocida* re-isolation and no microscopic or gross pathological changes were observed in the control groups.

The IS chickens showed the same types of clinical signs as NIS birds, except for spontaneous tracheal rales, diarrhoea and cyanosis, but at a significantly lower frequency. IS chickens showed a total of 179 clinical...
signs and NIS birds a total of 372 signs ($P < 0.05$). The difference was not equally distributed between different organ systems (Table 1).

Depression, ruffled feathers and fever, which are signs of a stage of general infection, combined with signs from the airways such as sneezing, nasal discharges, dyspnoea, head scratching, and mouth discharges, were more common in NIS birds than IS birds, while those with nervous ties were more common in IS birds than NIS birds ($P < 0.05$). Spontaneous rales, diarrhoea, and cyanosis were recorded in the NIS birds only (Table 1). Not only did NIS birds show more clinical signs, the signs were also seen earlier in NIS compared with IS birds, with the majority of the signs recorded between the 1st and 10th days for NIS birds and between the 3rd and 6th days for IS birds (data not shown).

As seen from Supplementary Figure 1, gross lesions were observed on 23 and 22 of the 24 organs examined in NIS and IS birds, respectively. The preen gland (NIS birds) and the preen gland and adrenal gland (IS birds) were negative for the whole of the study period. Lesions were most frequently observed in the lung (NIS birds, 83.3%; IS birds, 75%) and air sacs (NIS birds, 66.7%; IS birds, 58.3%) in both groups, followed by the trachea, liver and spleen (58.3%) in NIS birds and the liver (58.3%), spleen (50%) and kidney (41.7%) in IS birds (Table 1). The number of gross lesions peaked between the 3rd and 24th h in NIS birds and between the 3rd and 12th to 24th h in IS birds, whereafter it decreased gradually to days 10 and 7 p.i. in NIS and IS birds, respectively (Figure 1). Typically, lesions were observed at later time points in NIS birds compared with the same organs in IS birds (Figure 1).

Gross inflammatory lesions/exudates were due to circulatory disturbances, degeneration and necrosis of the affected tissues. Very few lesions were observed at the end of the 2-week study period, except remnants of fibrin and fibrosis on some organs, a possible indication of recovery. Lesions became limited to the respiratory tissues and liver, spleen and caecal tonsils on the 3rd and 5th day and to the lungs after day 7 in NIS chickens. Only the lungs had lesions after day 5 and no lesions were observed in the 2nd week p.i. on the organs of IS birds (Figure 1).

On microscopic examination, all NIS organs and 20/24 IS organs had microscopic lesions/exudates. Lesions were observed over the full study period, except at 0 h and day 14 p.i. (Supplementary Figure 1). The pancreas, sciatic nerve, preen gland, and pectoral muscle were negative in IS birds. Lesions were frequently observed in the lungs (NIS birds, 83.3%; IS birds, 75%), air sacs (NIS birds, 66.7%; IS birds, 58.3%), trachea (NIS birds, 75%; IS birds, 58.3%), liver (NIS birds, 66.7%; IS birds, 58.3%) and spleen (NIS birds, 66.7%; IS birds, 50%) in both groups (Table 1). At the 12th hour p.i., all 24 NIS organs had showed pathology. The reproductive organ and the pectoral muscle were the last to be affected. In the IS birds the Harderian gland was the last to show a lesion on the 2nd day p.i. These most commonly observed lesions in both groups were congestion, oedema (in tissues and around blood vessels), haemorrhages, emphysema and atelectasis where granulomas caused obstruction, resulting in localized overinflation in air capillaries and ruptured air sacs with some subcutaneous emphysema, fibrin deposition, infiltration of tissues by heterophils, mononuclear cells and giant cells, and granuloma formation (Figure 2). Lesions were mostly mild (NIS birds, 108 and IS birds, 56). Severe lesions were observed in the respiratory organs (lung, air sacs, trachea), and spleen at 3 h to day 2 day in NIS birds, and in the respiratory organs (3 to 24 h), spleen, liver, and heart at 6 to 12 h p.i in IS birds (data not shown).

Using the FISH technique, all NIS and 21/24 IS organs had P. multocida FISH signals at one or more time points of the study period (Supplementary Figure 1). A typical signal is shown in Figure 3. The sciatic nerve, comb and preen gland were negative in IS birds. The P. multocida FISH signals were frequently

<table>
<thead>
<tr>
<th>Pathological sign</th>
<th>Percentage of samples positive by histopathological examination</th>
<th>Percentage of samples positive by gross pathological examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical sign</td>
<td>IS (%)</td>
<td>NIS (%)</td>
</tr>
<tr>
<td>Depression</td>
<td>33</td>
<td>79<sup>a</sup></td>
</tr>
<tr>
<td>Nervous tics</td>
<td>30</td>
<td>13<sup>a</sup></td>
</tr>
<tr>
<td>Ruffled feathers</td>
<td>24</td>
<td>74<sup>a</sup></td>
</tr>
<tr>
<td>Sneezing</td>
<td>25</td>
<td>36<sup>a</sup></td>
</tr>
<tr>
<td>Ataxia</td>
<td>14</td>
<td>14<sup>a</sup></td>
</tr>
<tr>
<td>Nasal discharges</td>
<td>13</td>
<td>34<sup>a</sup></td>
</tr>
<tr>
<td>Dyspnoea</td>
<td>12</td>
<td>16<sup>a</sup></td>
</tr>
<tr>
<td>Mouth discharges</td>
<td>1</td>
<td>6<sup>a</sup></td>
</tr>
<tr>
<td>Spontaneous rales</td>
<td>8</td>
<td>–</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>–</td>
<td>14</td>
</tr>
<tr>
<td>Cyanosis</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td>Fever</td>
<td>20</td>
<td>60<sup>a</sup></td>
</tr>
<tr>
<td>Head scratching</td>
<td>5</td>
<td>15<sup>a</sup></td>
</tr>
<tr>
<td>Total signs</td>
<td>179</td>
<td>372<sup>a</sup></td>
</tr>
</tbody>
</table>

^ano clinical sign seen. ^bStatistically different ($P < 0.05$) from the corresponding group of chickens. The results for histopathology and gross pathology only show results for the most commonly affected organs. ^bNumbers in parentheses show the distribution between signs characterized as mild, moderate and severe.
Figure 1. Clinical and pathological signs of fowl cholera and presence of *P. multocida* in 10 organs of normal (NIS) and immune-suppressed (IS) birds following challenge of 12-week-old-birds. Two birds were killed and examined at each time point. 1a: Record of the time points where gross pathological lesions were observed in the 10 organs most commonly affected. 1b: Record of the time points where microscopic lesions were observed in the same organs as above. 1c: Record of the demonstration of *P. multocida* by the culture technique in the same organs as above. 1d: Record of the demonstration of *P. multocida* by FISH in the same organs as above. Grey boxes show results for NIS birds, dark-shaded boxes show results for IS birds, light-shaded boxes indicate that no analysis was performed at this time point, and white boxes show that the result was negative at this time point.
observed in the lungs (NIS birds, 100%; IS birds, 91.7%),
air sacs (NIS birds, 75%; IS birds, 66.7%), trachea (NIS
birds, 100%; IS birds, 66.7%), and liver (NIS birds,
83.3%; IS birds, 75%). Most FISH signals were observed
between 1 and 24 h p.i. (Figure 1).

_**P. multocida** organisms were recovered less frequently
by culture method than by FISH (Figure 1 and
Supplementary Figure 1). Most bacterial cultures were
recovered from the lungs (NIS and IS birds, 58.3% each),
trachea (NIS birds, 75%; IS birds, 83.3%), liver (NIS
birds, 25%; IS birds, 8.3%), spleen (NIS birds, 50%; IS
birds, 8.3%), and caecal tonsils (NIS and IS birds, 25%
each). On the 2nd week p.i., there were no bacteria
recovered from organs, despite the mouse challenge used
to multiply the low number of bacteria (Figure 1).

Discussion

In the present study, the spread of _P. multocida_ organ-
isms, the clinical signs, lesions (gross and microscopic),
their distribution and bacterial occurrence (FISH and
culture) in 24 tissue organs of 12-week-old NIS and IS
indigenous chickens were investigated following chal-
lenge with a _P. multocida_ strain NCTC 10322^T_. The
strain has previously been shown to cause a chronic form
of fowl cholera in the same type of birds with the same
challenge dose (Mbuthia et al., 2008). The study both
allowed us to detail the time course of development of
fowl cholera and to determine the differences in pathol-
gy and spread of bacteria in IS and NIS chickens. In
general, the clinical and pathological signs observed in
NIS birds were typical those reported for intermediate to
chronic fowl cholera (Christensen & Bisgaard, 2000;
Glisson et al., 2003), indicating that the strain used
indeed does induce the chronic form of fowl cholera.
However, in addition to signs previously reported, we
also observed ataxia, nervous tics and head scratching in
these birds. There was often variation between the two
birds sacrificed at the same time point in each group
with regard to severity and time point for first onset of
clinical signs and pathological lesions. This corroborates
previous observation of large bird-to-bird variation in
chronic fowl cholera (Christensen & Bisgaard, 2000;
Glisson et al., 2008). This variation is in striking contrast
to acute cases of this disease.

We observed lesions as well as bacteria for up to 14
days in some organs. The relatively long time period
where _P. multocida_ persisted in many organs, apparently
without passing a threshold for toxic concentrations of
endotoxin, may be due to a low load of bacteria in the
organs. Our study was not set up to quantify bacteria,
and further studies are indicated to clarify this point.
However, culture and the FISH technique often did not
show bacteria even when pathological changes were
clear, and this may indicate that the concentration of
bacteria is very low.

As part of the study, we compared culture, culture
supplemented with enrichment of bacteria in mice and
the FISH technique for detection of bacteria in the
affected organs. The FISH test results compared very
well with the presence of gross and microscopic lesions,
while detection of _P. multocida_ by culture and FISH were
only comparable up to day 3 p.i. (NIS birds) and 24 h (IS
birds). Thereafter, the FISH test was found to detect the
bacteria better than the other methods. _P. multocida_
FISH signals were detected in the preen gland and large
intestines, but no bacteria were isolated from these
organs. Culture technique especially detecting bacteria in
the lungs, trachea and liver, and this may indicate that

Figure 2. Illustration of the most commonly observed microscopic changes in both IS and NIS birds. 2a: Chicken lung from a NIS bird showing pyogranulomatous fibrinous inflammation (x40). 2b: High magnification of “2a” (x400). F, fibrin exudate; H, heterophil; M, macrophage; L, lymphocyte; R, erythrocyte (haematoxylin and eosin stain).

Figure 3. Illustration of FISH signals. The figure shows samples of chicken lungs from NIS birds: (3a) bacteria in air capillaries, (3b) bacteria in pneumonic lesions positive for _P. multocida_ on FISH test, and (3c) control lung.
these organs carry the highest bacterial load; however, we did not quantify bacteria in the current study. The low recovery is a general P. multocida re-isolation trend, which has also been reported for commercial birds, where recovery after 48 h is usually scanty (Christensen & Bisgaard, 2000; Petersen et al., 2001).

Mouse inoculation has until now been considered the most sensitive method (Christensen & Bisgaard, 2000), for which reason we included it in the present study. However, the use of FISH may eliminate the need for experimental animals in this type of study.

The fact that FISH signals correlated far better with the pathological signs observed suggest that this method is superior to culture for detection of P. multocida during this type of infection; however, we cannot exclude the possibility that FISH to a certain degree detects bacteria that are no longer viable. The signal intensity depends on the amount of rRNA present in the ribosomes of the cell (Moter & Gobel, 2000). The stability of ribosomes in P. multocida in different growth stages is unknown, but studies of Escherichia coli suggest that ribosomes are degraded to 50% when the growth enters from the logarithmic into the stationary phase, and that the ribosomes thereafter are stable for several hours (Pirr et al., 2011). Based on this, one should not put too much emphasis on differences in detection by FISH in the early parts of the study, but it seems unlikely that FISH signals will be false positive for more than a couple of hours post death of the bacterium. FISH signals were detected as early as 5 min p.i. in the NIS chickens (trachea and lungs), but not in IS birds. This section sample was taken immediately after the intratracheal challenge, and we believe that the positive lung sample was due to contamination during processing of the slide for microscopic examination.

The IS chickens in general had fewer and less severe lesions in lymphoid-rich tissues (spleen, caecal tonsils), and it appears that immune suppression, in particular, affects the expression of lesions in these organs of the indigenous chickens. The dexamethasone treatment applied for immune suppression in the current study was initially used by Courrier et al. (1991) to study the effect of immune suppression on caecal colonization of broiler chickens with Salmonella. They found no differences in colonization numbers depending on immune suppression, whether this was done by use of cyclophosphamide, cyclosporin or dexamethasone. Dexamethasone treatment results in increased production of PMNs in the bone marrow of human patients (Dale et al., 1975), but suppresses acute inflammatory responses by preventing neutrophil movement to an inflammatory site (Dale et al., 1974). The mechanism is not fully understood, but by use of a nylon adhesion model as a surrogate for epithelial cells, Mcgruder et al. (1995) did not observe less adhesion by heterophils from dexamethasome-treated compared with normal chickens. Heterophilic cells, the chicken equivalent of PMNs, are supposed to be the first line of defence against P. multocida infection (Pedersen et al., 2001). Our results clearly demonstrated that chickens treated with dexamethasone developed fewer clinical signs and less severe pathological changes following infection with P. multocida. This indicates that at least a part of the clinical signs in chronic fowl cholera are caused by the immune system, and supposedly the heterophilic response. This result corroborates previous results of an acute P. multocida infection model, in which 5-fluouracil was used to deplete birds from heterophils (Bojesen et al., 2004), and suggests that more emphasis should be put into identification of the factors of P. multocida that stimulate heterophil activation.

The time points at which different organs became positive for bacteria, and the rate at which this happened, allowed us to hypothesize a likely pathogenesis of infection. Following the intratracheal challenge, organs of the airways (trachea, lung, air sacs) quickly became positive. Since we used both in situ hybridization and culture, we were able to conclude that an invasion and not just passive colonization happened (Figure 3). Conjunctiva also turned positive within the first hours, but this may possibly be due to spillover from the inoculation. There was a quick spread to the spleen and liver within 1 h post inoculation, and by 3 h post inoculation the heart and a range of other organs were also FISH and/or culture positive. All organs had shown FISH signals between the 1st and 24th h, except the proen gland. This showed that P. multocida spread quickly to all body sites, which is a hallmark of per-acute infection seen with highly virulent strains (Christensen & Bisgaard, 2000). This happened both in NIS birds and IS birds. Apparently, the difference in severity of infection observed between highly virulent strains and the low-to-medium virulent strain used in the current study does not related to the speed by which it spreads systemically from the point of entrance.

Some organs were positive by FISH even 14 days p.i. The organs that had been most severely affected and where bacterial cultures were positive with the highest frequency (i.e. those organs that most probably carried the highest load of bacteria) were positive in both NIS and IS birds, and it is possible that they simply remain positive, because the time is takes to clear the infection from a particular site is dependent on the number of bacteria. Late (re)colonization, as judged by FISH, was observed for lymphoid tissue in the caecal tonsils (IS birds) and the bursa of Fabricius (both NIS and IS birds), and it may be that this type of tissue constitutes a site for long-term carriage of P. multocida following chronic fowl cholera infection.

The infection of the gastro-intestinal tract tissues, observed in the present study, raises a possibility that this P. multocida strain can enter or be shed through it, as suggested by Lee et al. (2000) and Muhairwa et al. (2001). Indeed, in an intestinal loop infection assay it has been demonstrated that different P. multocida strains survive well in the gut (Christensen, 2002); however, confirmation from natural infections still needs to be produced. Infection of the reproductive organs (testis and ovary) observed in the study has not been reported previously, although Bisgaard (1995) was able to isolate the bacterium from the oviducts of some ducks. P. multocida organisms shed from the cloaca can, therefore, emanate from the gastro-intestinal tract (bursa of Fabricius), reproductive and urinary systems.

In summary, we have described in detail the time course of chronic infection with fowl cholera in normal and immune-suppressed chickens. In accordance with a previous report on acute fowl cholera (Bojesen et al., 2004), normal birds showed more clinical signs and pathological lesions and for a longer period than immune-suppressed birds. The influence of dexamethasone on the immune system is not fully understood, but
taken together our results indicate that the heterophilic cells and other parts of the cellular immune system contribute to the development of pathological lesions seen in infected birds.

Acknowledgements

The Chairman, Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi is thanked for allowing use of the laboratory facilities and the staff. Sincere thanks are given to Mr John Mukiri, Mr John K. Muongi, Zackary M. Wamuri, Justus N. Matata, Henry M. Kimuya, Mary Wanjiuru, John Mungai, Tony Bonnellyck and Christina Petersen for technical help. The study was financed by the Danish International Development Agency (DANIDA) through the ENRECA programme “Improving the Health and Productivity of the Rural Poultry in Africa” (IHEPRUCA) and University of Nairobi grant number 500-661-092.

References

Supplementary Figure 1

Clinical and pathological signs of fowl cholera and presence of *P. multocida* in normal (NIS) and immune-suppressed (IS) birds following challenge of 12-week-old-birds. Records were made from 24 different organs. At each time point, a record is given for NIS and IS birds for gross pathological changes present (marked G), histopathological changes (marked H), positive for *P. multocida* by FISH (marked F) and positive for *P. multocida* by culture method (marked C). White boxes indicate negative results and grey boxes indicate that no record was made. Numbers in boxes are birds out of two that were found positive.

<table>
<thead>
<tr>
<th>Organ</th>
<th>NIS</th>
<th>IS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caecal tonsils</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large intestines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bursa Fabricius</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thymus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harderian gland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sciatic nerve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testis/ovary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adrenal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pectoral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pruning gland</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Downloaded by [The University of Nairobi Library] at 05:35 16 February 2012