Planta Medica
Journal of Medicinal Plant and Natural Product Research

Editor-in-Chief
Luc Pieters, Antwerp, Belgium

Senior Editor
Adolf Nahrstedt, Münster, Germany

Review Editor
Matthias Hamburger, Basel, Switzerland

Editors
Rudolf Bauer, Graz, Austria
Veronika Butterweck, Muttenz, Switzerland
Thomas Efferth, Mainz, Germany
Irmgard Merfort, Freiburg, Germany
Hermann Stuppner, Innsbruck, Austria
Yang-Chang Wu, Taichung, Taiwan

Editorial Offices
Claudia Schärer, Basel, Switzerland
Tess De Bruyne, Antwerp, Belgium

Advisory Board
John T. Arnason, Ottawa, Canada
Yoshinori Asakawa, Tokushima, Japan
Lars Bohlin, Uppsala, Sweden
Mark S. Butler, S. Lucia, Australia
João Batista Calixto, Florianopolis, Brazil
Claus Cornett, Copenhagen, Denmark
Hartmut Derendorf, Gainesville, USA
Alfonso Garcia-Piñeres, Frederick MD, USA
Jürg Gertsch, Zürich, Switzerland
Simon Gibbons, London, UK
De-An Guo, Shanghai, China
Andreas Hensel, Münster, Germany
Peter J. Houghton, London, UK
Jinwoong Kim, Seoul, Korea
Jürg Gertsch, Zürich, Switzerland
Simon Gibbons, London, UK

Publishers
Georg Thieme Verlag KG
Stuttgart · New York
Rüdigerstraße 14
D-70469 Stuttgart
Postfach 30 11 20
D-70451 Stuttgart

Thieme Publishers
333 Seventh Avenue
New York, NY 10001, USA
www.thieme.com

Reprint
© Georg Thieme Verlag KG
Stuttgart · New York
Reprint with the permission of the publishers only
Antiplasmodial Quinones from *Pentas longiflora* and *Pentas lanceolata*

Authors

Milkyas Endale¹, John Patrick Alao², Hoseah M. Akala³, Nelson K. Rono¹, Fredrick L. Eyase¹, Solomon Derese¹, Albert Ndakala¹, Martin Mbugua¹, Douglas S. Walsh¹, Per Sunnerhagen¹, Mate Erdelyi¹, Abiy Yenesew¹

Affiliations

The affiliations are listed at the end of the article

Key words

- *Pentas longiflora*
- *Pentas lanceolata*
- Rubiaceae
- anthraquinone
- 5,6-dihydroxylamnacanthol
- pyranonaphthoquinone
- malaria

Abstract

The dichloromethane/methanol (1:1) extracts of the roots of *Pentas longiflora* and *Pentas lanceolata* showed low micromolar (IC₅₀ = 0.9–3 µg/mL) in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of *Plasmodium falciparum*. Chromatographic separation of the extract of *Pentas longiflora* led to the isolation of the pyranonaphthoquinones pentalongin (1) and psychorubrin (2) with IC₅₀ values below 1 µg/mL and the naphthalene derivative mollugin (3), which showed marginal activity. Similar treatment of *Pentas lanceolata* led to the isolation of eight anthraquinones (4–11, IC₅₀ = 5–31 µg/mL) of which one is new (5,6-dihydroxydamnacanthol, 11), while three – nornamnacanthal (7), lucidin-ω-methyl ether (9), and damnacanthol (10) – are reported here for the first time from the genus *Pentas*. The compounds were identified by NMR and mass spectrometric techniques.

Supporting information available online at http://www.thieme-connect.de/ejournals/toc/plantamedic

Introduction

According to the estimates of the World Health Organization, almost one million deaths are caused by malaria each year in Africa alone, of which most are children under the age of five [1]. In addition, this mosquito-borne disease has a serious economic impact due to loss of commercial and labor outputs, predominantly in countries with tropical and subtropical climates. Over 300000000 people worldwide are infected, and each year nearly one-third of these exhibit acute manifestations of the disease [2]. While awaiting the development of a malaria vaccine, millions of lives are still dependent upon treatment with chemotherapeutic agents. Since most of the available drugs are becoming increasingly ineffective due to the rapid emergence of resistant *Plasmodium falciparum* strains [3], there is an urgent need for novel antimalarial agents. Because of the high cost of the few still effective antimalarial drugs [4], traditional medicine remains an important source of treatment in developing countries. *Pentas longiflora* Oliver (Rubiaceae) is an important medicinal plant of Tropical East Africa [5]. In Kenya, a decoction of its roots mixed with milk is taken as a cure for malaria [6]. Although its leaves have previously been tested for in vitro antimalarial activity, no attempts were made to isolate and identify the antimalarial constituents [7], *Pentas lanceolata* (Forsk.) is mostly found in the highlands of Kenya and was reported to exhibit micromolar in vitro antimalarial activity against *P. falciparum* [8]. Although extracts of these plants have been assayed against a range of diseases [8, 9], their constituents have not been investigated for antimalarial activity. Motivated by the traditional uses and the preliminary screening reports [7–9], we performed isolation, characterization, and an antimalarial investigation of naphthoquinones and anthraquinones found in the extracts of the roots of *P. longiflora* and *P. lanceolata*.

Materials and Methods

General experimental procedures

Column chromatography was performed on oxalic acid impregnated silica gel [the silica gel was deactivated by mixing 2 kg of silica gel 60 (70–230 mesh) with 3% oxalic acid (30 g in 1 L water) and allowed to stand for 30 min, filtered and dried in an oven (100 °C) for 45 min]. TLC was done using silica gel 60 F₂₅₄ (Merck) precoated...
plates. NMR analyses were carried out on Varian 800, 600, 500 and 200 MHz spectrometers. Structural assignment was performed based on gCOSY, gTOCSY, gNOESY, gHSQC, gHMBC, and gH2BC spectra. ESI LC-MS was performed on a Perkin Elmer PE SCIEX API 150EX instrument equipped with a Turbolon spray ion source and a Gemini 5-mm C18 110 Å HPLC column using a water-acetonitrile gradient (80:20 to 20:80). High-resolution mass spectral analysis (Q-TOF-MS) was performed at Stenhagen Analyslab AB, Gothenburg, Sweden. The compound purity was determined by NMR and HPLC. Analytical HPLC was run on a Hewlett Packard Series 1050 HPLC using the software Chromulan (Pikron Ltd.), a Gemini 5-mm C18 110 Å HPLC column and a methanol-water mixture as the eluent.

Plant material

The roots of *Pentas longiflora* were collected from Nandi East district, Kenya (Nandi Hills- Chebarus location) in August 2009. The roots of *Pentas lanceolata* were collected from Ngong forest in December 2009. The plant materials were identified by Mr. Patrick Chalo Mutiso, School of Biological Sciences, University of Nairobi. Specimens are deposited at the Herbarium, School of Biological Sciences, University of Nairobi, under voucher numbers MEA 2009/001 (*Pentas longiflora*) and MEA 2009/002 (*Pentas lanceolata*).

Extraction and isolation

The dried and grounded roots of *Pentas longiflora* (1.1 kg) were extracted by cold percolation with CH2Cl2:MeOH (1:1) three times for 24 hrs in each case. The extract was concentrated using a rotary evaporator to yield a brownish crude extract (50 g, 4.5%). Fractions 15–17 (2% acetone in n-hexane) were purified by Sephadex LH-20 (eluents CH2Cl2:MeOH; 1:1) to give mullugin (3, 34 mg). Fractions 18–25 (3% acetone in n-hexane) were purified by column chromatography on oxalic acid impregnated silica gel (eluents 2% acetone in n-hexane) to give pentagonalin (1, 40 mg). Fractions 90–112 (20% acetone in n-hexane) were combined and purified by Sephadex LH-20 (eluents CH2Cl2:MeOH; 1:1) to give psychorubrin (2, 100 mg). The ground roots (1.4 kg) of *Pentas lanceolata* were extracted with CH2Cl2:MeOH (1:1) and then with methanol three times for 24 hrs in each case. The extracts were concentrated using a rotary evaporator to yield a brownish crude extract (57 g, 4.8% and 100 g, 7.1%, respectively).

A 54-g portion of the crude CH2Cl2:MeOH (1:1) extract was subjected to column chromatography (80 cm length and 80 mm diameter column size, 350 g oxalic acid impregnated silica gel) with an increasing gradient of acetone in n-hexane. Two hundred fractions (each ca. 200 mL) were collected. Fractions 15–17 (2% acetone in n-hexane) were purified by Sephadex LH-20 (eluents CH2Cl2:MeOH; 1:1) to give mullugin (3, 34 mg). Fractions 18–25 (3% acetone in n-hexane) were purified by column chromatography on oxalic acid impregnated silica gel (eluents 2% acetone in n-hexane) to give pentagonalin (1, 40 mg). Fractions 90–112 (20% acetone in n-hexane) were combined and purified by Sephadex LH-20 (eluents CH2Cl2:MeOH; 1:1) to give psychorubrin (2, 100 mg).

Results and Discussion

In our experience, the root extracts of *P. longiflora* and *P. lanceolata* showed significant antiplasmodial activities (Table 1). From the root extract of *P. longiflora*, the naphthalene derivatives...
This is a copy of the author’s personal reprint

Table 1 In vitro antiplasmodial activity and cytototoxicity of crude extracts and pure compounds.

<table>
<thead>
<tr>
<th>Sample (purity in %)</th>
<th>Antiplasmodial activity IC50* (µg/mL)</th>
<th>Cytotoxicity LD50§ (µg/mL)</th>
<th>Selectivity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W2 clone (CQ-R)</td>
<td>D6 clone (CQ-S)</td>
<td></td>
</tr>
<tr>
<td>Pentas longiflora (root extract)</td>
<td>0.93 ± 0.16</td>
<td>0.99 ± 0.09</td>
<td></td>
</tr>
<tr>
<td>Pentalogin (1, ≥ 98%)</td>
<td>0.27 ± 0.09</td>
<td>0.23 ± 0.08</td>
<td>0.80</td>
</tr>
<tr>
<td>Psychorubrin (2, ≥ 98%)</td>
<td>0.91 ± 0.15</td>
<td>0.82 ± 0.24</td>
<td>0.89</td>
</tr>
<tr>
<td>Mollugin (3, ≥ 95%)</td>
<td>10.22 ± 1.37</td>
<td>7.56 ± 1.13</td>
<td>20.0</td>
</tr>
<tr>
<td>Pentas lanceolata (root extract)</td>
<td>2.55 ± 0.30</td>
<td>1.33 ± 0.15</td>
<td></td>
</tr>
<tr>
<td>Tectoquinone (4, ≥ 98%)</td>
<td>10.78 ± 1.33</td>
<td>6.74 ± 1.73</td>
<td>> 100</td>
</tr>
<tr>
<td>Rubiadin (5, ≥ 98%)</td>
<td>8.36 ± 2.19</td>
<td>5.47 ± 0.70</td>
<td>53.0</td>
</tr>
<tr>
<td>Rubiadin-1-methyl ether (6, ≥ 98%)</td>
<td>18.91 ± 0.39</td>
<td>12.08 ± 2.28</td>
<td>64.0</td>
</tr>
<tr>
<td>Nordanancanthal (7, ≥ 99%)</td>
<td>9.33 ± 2.98</td>
<td>9.29 ± 0.00</td>
<td>51.0</td>
</tr>
<tr>
<td>Damnacanthol (8, ≥ 99%)</td>
<td>10.88 ± 2.09</td>
<td>7.67 ± 0.36</td>
<td>73.0</td>
</tr>
<tr>
<td>Lucidin-ω-methyl ether (9, ≥ 98%)</td>
<td>13.19 ± 2.15</td>
<td>12.08 ± 3.69</td>
<td>> 100</td>
</tr>
<tr>
<td>Damnacanthol (10, ≥ 98%)</td>
<td>31.42 ± 2.32</td>
<td>16.07 ± 1.15</td>
<td>> 100</td>
</tr>
<tr>
<td>5,6-Dihydroxydamnacanthol (11, ≥ 99%)</td>
<td>19.33 ± 6.36</td>
<td>15.02 ± 4.28</td>
<td>> 100</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>0.07 ± 0.01</td>
<td>0.03 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>Mefloquine</td>
<td>0.04 ± 0.01</td>
<td>0.06 ± 0.02</td>
<td></td>
</tr>
</tbody>
</table>

* Data are the mean of at least 3 independent experiments. § The mean value of at least 6 independent experiments are given; 95% confidence interval and dose-response curves are presented in Supporting Information.

pentalogin (1) [11–13], psychorubrin (2) [14], and mollugin (3) (Fig. 1) [13,15] were chromatographically isolated, identified, and tested for antiplasmodial activities. The major constituents 1 and 2 showed good to moderate activities (IC50 < 1 µg/mL), whereas 3 had marginal inhibition against the W2 chloroquine-resistant and D6 chloroquine-sensitive strains of *P. falciparum* (Table 1). Although these compounds were previously reported [11, 12] and studied for antibacterial [16], antifungal [17], and antiviral [18] properties, their antiplasmodial activities are reported here for the first time.

Chromatographic separation of the dichloromethane/methanol (1:1) extract of the roots of *P. lanceolata* resulted in the isolation of seven known anthraquinones (Fig. 2), spectroscopically (NMR and MS) identified as tectoquinone (4) [15], rubiadin (5) [19], rubiadin-1-methyl ether (6) [19], nordanancanthal (7) [20], damnacanthal (8) [19], lucidin-ω-methyl ether (9) [26,29], and damnacanthol (10) [21]. Three of these (7, 9, and 10) are reported here for the first time from the genus *Pentas*. In agreement with previous investigations of rubiadin-1-methyl ether (6), damnacanthal (8), and lucidin-ω-methyl ether (9) [22], the anthraquinones isolated from the roots of *P. lanceolata* showed moderate antiplasmodial activities (Table 1).

The methanol extract yielded further amounts of 5, 6, 10, and a new compound 11 (Fig. 3) isolated as a red solid. The Q-TOF-MS spectrum provided the exact mass m/z 317.0659 [M + H]+, suggesting a molecular formula of C16H12O7. The UV-VIS absorption maxima at 218, 274, 308, and 424 nm suggests a 9,10-anthraquinone skeleton [23]. Its 1H NMR spectrum (Table 2) revealed an aromatic singlet, a pair of ortho-coupled aromatic protons, a methoxy, and an oxymethylene substituent as well as three solvent accessible and one chelated (δH 12.40) hydroxyl groups. Two carbonyl functionalities were indicated by 13C-NMR. The HMBC correlation of the methoxy proton with C-1 and the.

This is a copy of the author’s personal reprint.

This is a copy of the author's personal reprint.

Fig. 2 Structures of known compounds isolated from the roots of Pentas lanceolata.

Fig. 3 Structure of 5,6-dihydroxydamnacanthol (11).

oxymethylene protons with C-1, C-2 and C-3 (Table 2) are consistent with the methoxy, oxymethylene, and a hydroxyl substitution in ring A. The high chemical shift of the methoxyl group (δC 62.4 ppm) is indicative of di-ortho [24] substitution allowing its placement at C-1 rather than C-3. Hence, in similarity to previously identified anthraquinones of the Rubiaceae family [25], ring A of 11 is oxygenated at C-1 and C-3 and has the oxymethylene at C-2. The aromatic singlet at δH 7.55 ppm (H-4) showed an HMBC correlation with the C-10 carbonyl (δC 189.2 ppm), indicating their peri position. The high chemical shift of this carbonyl is indicative of a peri-hydroxyl group at C-5, which is further confirmed by the HMBC correlation of the aromatic doublet at δH 7.57 ppm (H-8) to the carbonyl at δC 178.7 ppm (C-9), but not with the one at δC 188.5 ppm (C-10). These three bond heteronuclear correlations confirm the dihydroxy substitution at C-5 and C-6 in ring C. Therefore, compound 11 was characterized as 3,5,6-trihydroxy-1-methoxy-2-hydroxymethyl-9,10-anthraquinone (Fig. 3) for which the trivial name 5,6-dihydroxydamnacanthol is proposed. Our assignment is in good agreement with that of the recently reported and closely-related 2-hydroxymethyl-1-methoxy-3,5,6-trihydroxyanthraquinone-3-O-β-glycopyranoside, isolated from Pentas lanceolata (L. fil, Rubiaceae) [26]. An additional evidence for the biosynthetic route in the family Rubiaceae [25] yielding compound 11 is the presence of the 2-ethoxy-derivative of 11, 2-ethoxymethyl-3,5,6-trihydroxy-1-methoxanthraquinone, in the extract of Pentas lanceolata (L. fil) [27]. Based on the biosynthesis of anthraquinones of the Rubiaceae family, most of these compounds are substituted with hydroxyl, methoxyl, and/or methyl groups in ring A (Fig. 2) [25], and some carry additional hydroxyl or alkoxyl groups in ring C, mainly at positions 5 and 6 [25,28]. These latter oxygen atoms are introduced at a late stage of the biogenesis [25], which is shown, for example, for morindone, as reported from the cell cultures of Morinda citrifolia [29] and for putorinoside A, isolated from Pouteria calabàca [27]. As a consequence of the biosynthetic pathway, most, if not all, anthraquinones carry a carbon substituent at position 2 in ring A [25]. One of the rare exceptions from the above rule is 2-ethoxy-1-hydroxyanthraquinone isolated from Morinda citrifolia [30], a compound lacking carbon (CH₂, CHO, CH₃) substitution at C-2. We would like to emphasize that if a carbon substitution is present in an anthraquinone derived from the Rubiaceae family, based on biogenetics [25], the currently accepted nomenclature, it is placed unambiguously at position 2 in ring A. Not following the above convention [31] may be perplexing in the evaluation of biosynthetic routes and bioactivities. Hence, the compounds named 1,2-dimethoxy-6-methyl-9,10-anthraquinone and 1-hydroxy-2-methoxy-6-methyl-9,10-anthraquinone [31] should be correctly named as 5,6-dimethoxy-2-methyl-9,10-anthraquinone and 6-hydroxy-5-methoxy-2-methyl-9,10-anthraquinone. Since complete and correctly assigned spectroscopic characterization was not available for several anthraquinones described here, detailed MS, and 1H and 13C NMR analysis (based on homo- and heteronuclear correlation spectra providing unambiguous assignment) is reported (Supporting Information). Despite their promising activity against the W2 and D6 strains of Plasmodium falciparum, the comparably high cytotoxicity (Table 1) of 1 and 2 makes their direct application as antimalarial agents virtually impossible. The anthraquinones isolated from Pentas lanceolata, 4-11, show low cytotoxicity indicating the safer applicability of the anthraquinone containing an indigenous decoction of P. lanceolata as compared to that of the pyranonaphthoquinone containing P. longiflora.

In conclusion, the pyranonaphthoquinones and some of the anthraquinones isolated from the roots of P. lanceolata and P. longiflora showed good to moderate antiplasmodial activities against the W2 and D6 strains of Plasmodium falciparum, and an overall low cytotoxicity for anthraquinones. Careful analysis of their structure–activity relationship followed by rational synthetic modifications has the potential for identifying more applicable agents in the fight against malaria.

Acknowledgements

M. Endale is thankful to the German Academic Exchange Service (DAAD) and the Natural Products Research Network for Eastern and Central Africa (NAPRECA) for a Ph.D. Scholarship. J.P. Alao and P. Sunnerhagen are thankful to the Chemical Biology Platform at the University of Gothenburg. M. Erdelyi is thankful for the financial support from the Swedish Research Council (VR2007-4407) and the Royal Society of Arts and Sciences in Gothenburg.

Conflict of Interest

Hereewith we declare the absence of any conflict of interest, financial or personal, for all authors.

Affiliations

1 Department of Chemistry, University of Nairobi, Nairobi, Kenya
2 Department of Cell- and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
3 United States Army Medical Research Unit-Kenya, MRU 64109, APO, AE 09831-4109, USA
4 Department of Chemistry, University of Gothenburg, Sweden, and the Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden
References