AMINES
Amines

Introduction

Amines are organic derivatives of ammonia in which one or more of the hydrogen atoms of ammonia have been replaced by alkyl or aryl groups.

\[
\begin{align*}
\text{Ammonia} & : \quad H-N-H \\
\text{Amines} & : \quad R-N-H \\
\end{align*}
\]
Amines occur widely in nature in biological systems (in both the plant and animal kingdom). Smaller amines are characterised by their fishy odours.

Serotonin, a neurotransmitter found in the gastrointestinal tract, regulates mood and appetite (is responsible for the feeling of having had eaten enough).
Classification of Amines

Amines are classified as primary, secondary or tertiary based on the degree of substitution on nitrogen (number of alkyl or aryl residues attached to the nitrogen).

![Chemical structures showing primary, secondary, and tertiary amines]

Example

- **Primary amine**: $\text{CH}_3\text{N}^+\text{H}^-$
- **Secondary amine**: $\text{CH}_3\text{N}^+\text{CH}_3$
- **Tertiary amine**: $\text{CH}_3\text{N}^+\text{CH}_3$

Note the difference in classification of alcohols and amines: Alcohols are classified by the number of alkyl groups on the α-carbon, but amines (as is with amides) are classified by the number of alkyl or aryl groups attached to the nitrogen.
In the IUPAC nomenclature, aliphatic amines are named in two ways depending on the complexity of their structure:

(a) Simple primary amines are named by appending the suffix –amine to the name of the alkyl group (radical). Consequently, they are named as alkylamines or arylamines.

Under this nomenclature, the amino group is presumed to be connected to C-1.

- Ethylamine: \(\text{CH}_3\text{CH}_2-\text{NH}_2 \)
- Isopropylamine: \(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}-\text{NH}_2 \)
- 1-Methylbutylamine: \(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}-\text{NH}_2 \)
- tert-Butylamine: \(\text{CH}_3\text{CH}(\text{CH}_3)-\text{NH}_2 \)
- Cyclohexylamine: \(\text{CH}_3\text{C}(\text{CH}_3)\text{N}_2 \)
- Phenylamine: \(\text{C}_6\text{H}_5\text{NH}_2 \)
IUPAC Nomenclature of Amines

Symmetrical secondary and tertiary amines are named by adding to the name of the radical, a prefix “di-“ or “tri-”, respectively, and the suffix –amine.

Examples

- **Dimethylamine**: CH_3NCH_3
- **Trimethylamine**: CH_3NCH_3
- **Diphenylamine**: PhNPh
- **Triphenylamine**: PhNPh
IUPAC Nomenclature of Amines

Unsymmetrically substituted secondary and tertiary amines are named as N-substituted derivatives of primary amines. The longest carbon chain provides the parent name and the others are considered N-substituents of the parent chain. The prefix N- (italicized) is added as a locant to identify substituents on the amino nitrogen as needed.

Examples

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3\text{CH}_2\text{NH-} \quad \text{CH}_3\text{CH}_2\text{NH} & \\
\text{CH}_3\text{-N-CH}_2\text{CH}_2\text{CH}_2\text{CH}_3 & \quad \text{CH}_3\text{CH}_2\text{NH-}\text{C}_6\text{H}_{11} & \\
N,N\text{-Dimethylbutylamine} & \quad N\text{-Ethylcyclohexylamine} & \\
\text{CH}_2\text{CH}_3 & \quad \text{CH}_3 & \\
\text{CH}_3\text{-N-CH}_2\text{CHCH}_2\text{CH}_3 & \quad \text{C}_3\text{H}_7 \quad \text{N-} & \\
N\text{-Ethyl-N,2-dimethylbutylamine} & \quad N\text{-Cyclopropyl-N-methylcyclohexylamine} & \\
\end{align*}
\]
IUPAC Nomenclature of Amines

(b) The alternative system of naming aliphatic amines is analogous to that of alcohols. The names of amines are derived by adding the **amine** suffix to the systematic name of the parent alkane. Consequently, amines are named as **alkanamines**.

The process begins by identifying the longest carbon chain that contains the amino group and then numbering from the end of the chain that gives the amino group the lowest locant.
IUPAC Nomenclature of Amines

Aliphatic amines in which the amino group is attached directly to a ring are also named in the same way as cycloalkanamines. The numbering in substituted system begins from the carbon attached to the amino group.
Aromatic amines are named as derivatives of aniline. Substituted anilines are numbered beginning at the carbon that bears the amino group and the direction of numbering is governed by the usual ‘first point of difference’.

\[
\begin{align*}
\text{Aniline} & : \quad \text{NH}_2 \\
N\text{-Methylaniline} & : \quad \text{NH} - \text{CH}_3 \\
2\text{-Methylaniline} & : \quad \text{NH}_2 - \text{CH}_3 \\
N\text{-Ethyl-2-methylaniline} & : \quad \text{N} - \text{CH}_2\text{CH}_3 \\
\end{align*}
\]
IUPAC Nomenclature of Heterocyclic Amines

Heterocyclic amines are cyclic compounds in which one or more of the atoms of the ring are nitrogen atoms.

Parent Heterocycle | Derivative

Pyrrolidine | Pyrrolidine-2-carboxylic acid (Proline)
Azacyclopentane | Azacyclopentane-3-carboxylic acid

Piperidine | N-Methylpiperidine
Azacyclohexane | or 1-Methylpiperidine
IUPAC Nomenclature of Heterocyclic Amines

Aromatic heterocyclic amines also exist. The heterocyclic nitrogen is always numbered as position 1

Examples

- Pyrrole
- Indole
- Imidazole
- Pyridine
- Quinoline
- Isoquinoline
Properties of Amines

Physical Properties of Amines

Just like alcohols, amines are polar compounds. However, because nitrogen is less electronegative than oxygen, the N-H bond is less polar than the O-H bond and hydrogen bonds between amine molecules are weaker than those between alcohol molecules.

The polar nature of amines influences many of its physical properties such as boiling point. For similarly constituted compounds, alkylamines have boiling points which are higher than those of alkanes, but lower than those of alcohols.

Examples

<table>
<thead>
<tr>
<th></th>
<th>CH<sub>3</sub>CH<sub>2</sub>CH<sub>3</sub></th>
<th>CH<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub></th>
<th>CH<sub>3</sub>CH<sub>2</sub>OH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propane</td>
<td>-42 °C</td>
<td>17 °C</td>
<td>78 °C</td>
</tr>
<tr>
<td>Ethanol</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Physical Properties of Amines

Primary and secondary amines have N-H bonds, allowing them to form intermolecular hydrogen bonds. Because primary amines have two N-H bonds, hydrogen bonding is more significant in primary amines than in secondary amines. Having no N-H bonds, pure tertiary amines cannot engage/participate in hydrogen bonding between their own molecules. Since hydrogen bonding significantly affects the boiling point of compounds, it is not surprising that among isomeric amines, primary amines have the highest boiling points and tertiary amines the lowest.

Examples

<table>
<thead>
<tr>
<th>Chemical Structure</th>
<th>Name</th>
<th>Boiling Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃CH₂CH₂NH₂</td>
<td>Propylamine (Primary amine)</td>
<td>50 °C</td>
</tr>
<tr>
<td>CH₃CH₂NHCH₃</td>
<td>N-Methylethylamine (Secondary amine)</td>
<td>34 °C</td>
</tr>
<tr>
<td>(CH₃)₃N</td>
<td>Triethylamine (Tertiary amine)</td>
<td>3 °C</td>
</tr>
</tbody>
</table>
Basicity of Amines

The unshared pair of electrons on the nitrogen atom of an amine dominates the chemistry of amines and is responsible for the basicity (sharing their lone pair of electrons with a proton) and nucleophilicity (sharing their lone pair with an electrophilic carbon).

Although amines are weak bases, they are considerably more basic than alcohols, ethers, and water. Indeed as a class of organic compounds, amines are the strongest bases of all neutral molecules.
Basicity of Amines

When an amine is dissolved in water, an equilibrium is established in which the water acts as an acid and transfers a proton to the amine. Aqueous solutions of amines are basic because of the following equilibrium:

\[
\begin{align*}
\text{Amine} & \quad + \quad \text{Water} \quad \overset{\text{H}}{\leftrightarrow} \quad \text{Ammonium ion} \\
\end{align*}
\]

Hydroxide ions make the aqueous solution basic

\[
K_{eq} = \frac{[\text{H}^+ \text{N}^+ \text{H}][\text{\text{-OH}}]}{[\text{H}^\text{\text{-N=H}}][\text{\text{-H-O-H}}]}
\]
Basicity of Amines

When the measurement is taken in water, the $[\text{H}_2\text{O}]$ remains fairly constant. Moving the constant $[\text{H}_2\text{O}]$ to combine it with the equilibrium constant generates the equation:

\[\left[\text{H}^{-}\text{O}^{-}\text{H} \right] \times K_{eq} = \frac{\left[\text{H}^{+}\text{N}^{\ominus}\text{H} \right]}{\left[\text{H}^{+}\text{N}^{\cdot}\text{R} \right]} \]

A new constant $\left[\text{H}^{-}\text{O}^{-}\text{H} \right] \times K_{eq}$ called the base constant is obtained.

Base constant $\equiv K_b = \frac{\left[\text{H}^{+}\text{N}^{\ominus}\text{H} \right]}{\left[\text{H}^{+}\text{N}^{\cdot}\text{R} \right]}$

The base constant K_b or its pK_b (-log K_b) can, therefore, be used to compare the relative basicities of the various amines. From the equation, it should be clear that groups (electron-donating) that stabilize the positive charge on nitrogen enhance the basicity of the amine.
Variation of Basicity Among Alkylamines

The basicity of alkylamines in the gas-phase increases in the order:

Order of basicity in gas-phase

\[
\begin{align*}
\text{Ammonia} & \quad \text{(Least basic)} \\
\text{Primary amine} & \\
\text{Secondary amine} & \\
\text{Tertiary amine} & \quad \text{(Most basic)}
\end{align*}
\]

The electron release from alkyl groups provides the principle mechanism by which the conjugate acid of the amine is stabilized in the gas-phase. The more alkyl groups attached to the positively charged nitrogen, the more stable the alkylammonium ion becomes.
Basicity of Saturated Heterocyclic Amines

Saturated heterocyclic amines are just as basic as the typical acyclic amines that contain the same heteroatom. For example, pyrrolidine, piperidine and morpholine behave like typical secondary amines. *N*-Methylpyrrolidine behaves like a typical tertiary amine.

\[
\text{Pyrrolidine} \quad \text{pK}_b = 2.7 \\
\text{N-Methylpyrrolidine} \quad \text{pK}_b = 3.7 \\
\text{Piperidine} \quad \text{pK}_b = 2.9 \\
\text{Morpholine} \quad \text{pK}_b = 4.7
\]
Arylamines (pK$_b$ = 10) such as aniline are far less basic than alkylamines (pK$_b$ = 4). For example, aniline is less basic than cyclohexylamine by nearly a million times.
Basicity of Arylamines

Aniline is a weaker base than cyclohexylamine because the electron pair on nitrogen of aniline is delocalized by interaction with the π-system of the aromatic ring and is less readily available for bonding to a proton. The unshared electron pair in cyclohexylamine is localized on nitrogen, less strongly held, and therefore available in an acid-base reaction.

![Resonance structures for Aniline and Cyclohexylamine]

Electron pair in aniline is delocalized into aryl ring hence not readily available to act as a base

Electron pair localized on nitrogen and hence available to act as a base

Resonance structures for Aniline
Basicity of Aromatic Heterocyclic Amines

Although non-aromatic heterocyclic amines such as piperidine are similar in basicity to alkylamines, when nitrogen is part of an aromatic ring as in certain heteroaromatic amines such as pyridine, its basicity decreases markedly.

\[
\begin{align*}
\text{Piperidine} & \quad \text{is more basic than} \quad \text{Pyridine} \\
pK_b = 2.8 & \quad pK_b = 8.8
\end{align*}
\]

Pyridine is less basic than an alkylamine because the lone pair electrons on nitrogen are held in an sp\(^2\) orbital (more s character thus a smaller orbital, electron more tightly held, less available for sharing), while those in the alkylamine are held in an sp\(^3\) orbital (lesser s character, larger orbital, electron less tightly held and thus more readily available for sharing).
Basicity of Aromatic Heterocyclic Amines

Certain other heteroaromatic amines such as pyrrole in which the electron pair on nitrogen is part of the aromatic electron cloud are even less basic than pyridine.

\[
\begin{align*}
&\text{Pyrrole} \\
pK_b &\approx 15
\end{align*}
\]

\[
\begin{align*}
&\text{Pyridine} \\
pK_b &= 8.8
\end{align*}
\]

Pyridine is more basic than pyrrole since the lone pair of electrons on nitrogen is readily available to initiate bond formation, while that of pyrrole is held up in the aromatic cloud.
To Determine the Order of Increasing Basicity

Least Basic
(1) Nitrogens that are positively charged (e.g. ammonium salts)
(2) Nitrogens whose lone pairs of electrons contribute towards the aromatic pi-cloud (e.g. pyrrole)
(3) Nitrogens whose lone pairs are delocalized to an adjacent pi-system (e.g. aniline)
(4) Lone pairs on an sp nitrogen (e.g. cyano group (nitrile))
(5) Lone pairs on an sp2 nitrogen (e.g. imines (pyridine))
(6) Lone pairs on an sp3 nitrogen (e.g. piperidine)
(7) Nitrogen of an unconjugated primary amine
(8) Nitrogen of an unconjugated tertiary amine
(9) Nitrogen of an unconjugated secondary amine

Most Basic
Reduction of Nitriles to Primary Amines

The reduction of nitriles to primary amines by catalytic hydrogenation proceeds via an imine intermediate.

\[
R-\text{C}≡\text{N} \xrightarrow{\text{H}_2/\text{Catalyst}} R-\text{CH}≡\text{NH} \xrightarrow{\text{H}_2/\text{Catalyst}} R-\text{CH}_2\text{NH}_2
\]

(Not isolated)

The reducing agents employed to reduce nitriles to primary amines are:

(a) LiAlH\(_4\)

(b) H\(_2\) / Ni or Pd/C

Ph\(-\text{C}≡\text{N} \xrightarrow{\text{H}_2/\text{Raney Ni}} \text{PhCH}_2\text{NH}_2
\]

Benzyllamine

\[
\begin{align*}
\text{CH}_2\text{C}≡\text{N} \xrightarrow{\text{LiAlH}_4} \text{CH}_2\text{CH}_2\text{NH}_2
\end{align*}
\]
Reduction of Nitrobenzenes to Arylamines

The reduction of nitrobenzenes provides arylamines. The nitro group can be reduced to an amino group using the following reagents:

(a) H_2 / Pd in acid or H_2 /Pt in acid.
(b) Fe/HCl, Zn/HCl, or Sn/HCl

Note that:

$$\text{Fe} + \text{HCl} \rightarrow \text{FeCl}_2 + \text{H}_2$$

Reducing agent

This is the ideal method to synthesize aromatic primary amines.
Reduction of Amides to Amines

The reduction of amides to amines using lithium aluminium hydride (LiAlH₄) provides access to primary, secondary and tertiary amines.

Amide

\[R-C-N^+ \quad R_1 \quad R_2 \]

1. LiAlH₄

\[\rightarrow \quad R \ CH_2 N^- \quad R_1 \quad R_2 \]

2. H₂O

Amine

R and R' = Hydrogen, alkyl or aryl groups

The reduction of amides to amines using lithium aluminium hydride (LiAlH₄) provides access to primary, secondary and tertiary amines.

Benzamide

\[\text{Ph} - C - NH_2 \]

1. LiAlH₄

\[\rightarrow \quad \text{Ph} \ CH_2 NH_2 \]

2. H₂O

Benzylamine

N,N-Dimethylcyclohexanecarboxamide

\[\quad \text{CH}_3 \quad \text{CH}_3 \quad \text{N}^+ \quad \text{C} - \quad \text{O} \quad \text{CH}_3 \quad \text{CH}_3 \]

1. LiAlH₄

\[\quad \text{CH}_3 \quad \text{CH}_3 \quad \text{N}^- \quad \text{C} - \quad \text{O} \quad \text{CH}_3 \quad \text{CH}_3 \]

2. H₂O

N,N-Dimethyl(cyclohexylmethyl)amine

\[\quad \text{CH}_3 \quad \text{CH}_3 \quad \text{N}^- \quad \text{C} - \quad \text{O} \quad \text{CH}_3 \quad \text{CH}_3 \]
Amines react with strong mineral acids such as HCl, H₂SO₄ and H₃PO₄ to form ammonium salts. Since free amines are easily oxidised, sometimes by just being exposed to the air, their conversion to ammonium salts serves to stabilise them.

Example

Ephedrine was used as a decongestant in the treatment of Asthma. It was sold & administered as the hydrochloride salt.
Amide Formation from Carboxylic Acids Using DCC

\[R'{-\text{NH}_2} + R{-\text{C}-\text{OH}} \xrightarrow{\text{DCC}} R{-\text{C}-\text{N}-R'} \]

(DCC) = 1,3-Dicyclohexylcarbodiimide Amide

The preparation of amides from carboxylic acids and amines can be accomplished under relatively mild conditions using 1,3-dicyclohexylcarbodiimide (DCC).

Example

\[\text{m-Toluic acid} + \text{diethylamine} \xrightarrow{\text{DCC}} \text{N,N-Diethyl-}m\text{-toluamide} \]

\[\text{m-Toluic acid} \text{ reacts with diethylamine in presence of DCC to provide the tick & mosquito repellent, N,N-diethyl-}m\text{-toluamide}. \]
Amide Formation with Acid Chlorides

\[
R-\text{NH}_2 + R'-\text{C}-\text{Cl} \rightarrow R'-\text{C}\cdot\text{NH}\cdot R + \text{H-Cl}
\]

Amines react with acid chlorides (by **nucleophilic acyl substitution**) to provide amides. An additional base may be incorporated in the reaction or an excess of the amine may be used to trap the HCl liberated during this acyl substitution.

Example

The acyl substitution reaction can be employed in the synthesis of the anti-anxiety drug Trimetozone.
Reaction of Amines with Acid Anhydrides

\[
\text{R-C-O-C-R} + \text{R'NH}_2 \rightarrow \text{R-C-N-R'} + \text{R-C-OH}
\]

Amines react with acid anhydrides (by nucleophilic acyl substitution) to provide amides.

Example

\[
\text{HO-} - \text{NH}_2 + \text{CH}_3\text{C-O-C-CH}_3 \rightarrow \text{HO-} - \text{NH-C-CH}_3 + \text{CH}_3\text{C-OH}
\]

\(\text{\(\rho\)-Aminophenol} \quad \text{Acetic anhydride} \quad \text{\(\rho\)-Acetamidophenol} \quad \text{Paracetamidophenol} \quad \text{Paracetamol}\)

Paracetamol is a pain reliever found in medicines such as Panadol and Tylenol.