Solving The Active Distribution Network Reconfiguration (ADNR) Problem Taking Into Consideration A Stochastic Wind Scenario and Load Uncertainity By Using HBFDE Method

Citation:
Moses MP, Abungu NO, Mbuthia PMJ. "Solving The Active Distribution Network Reconfiguration (ADNR) Problem Taking Into Consideration A Stochastic Wind Scenario and Load Uncertainity By Using HBFDE Method." International Journal of Emerging Technology and Advanced Engineering. 2013;3(7):26-36.

Abstract:

Past literature has attempted to solve the problem of network reconfiguration with Distributed Generators(DGs) without taking into consideration the intermittent renewable at a close proximity. Distribution Network Reconfiguration (ADNR) must account for uncertain behavior of loads and wind when the commercial wind based DG, Doubly Fed Induction Generators (DFIG) supports a significant part of network. In this paper, a new Hybrid Bacterial Foraging and Differential Evolution (HBFDE) algorithm is considered for the ADNR problem with minimum loss and an improved voltage profile. In the HBFDE algorithm the Differential Evolution (DE) algorithm is combined with the Bacterial Foraging (BF) algorithm to overcome slow and premature convergence of BF. Indeed, the proposed algorithm is based on the evolutionary natures of BF and DE, to take their advantage of the compensatory property, and avoid their corresponding drawbacks. In addition, to cope with the uncertainty behavior of loads and wind, a stochastic model is presented to solve the ADNR problem when the uncertainty related to wind and load forecast is modeled in a stochastic framework on scenario approach basis. The proposed algorithm is tested on the IEEE 33 - Bus Radial Distribution Test Systems. The results of the simulation show the effectiveness of proposed algorithm real time and real world optimization problems facing the smart grid.

Click here to read more...

PreviewAttachmentSize
ijetae_0713_05.pdf509.42 KB

UoN Websites Search